Topic: Ratio

Topic/Skill	Definition/Tips	Example
1. Ratio	Ratio compares the size of one part to	3:1
	another part.	
2 Droportion	Written using the : symbol.	In a class with 12 hours and 0 girls, the
2. Proportion	the size of the whole	In a class with 15 boys and 9 girls, the $\frac{13}{13}$
	the size of the whole.	proportion of boys is $\frac{1}{22}$ and the
	Usually written as a fraction.	proportion of girls is $\frac{9}{22}$
3. Simplifying	Divide all parts of the ratio by a common	5:10 = 1:2 (divide both by 5)
Ratios	factor.	14:21 = 2:3 (divide both by 7)
1 Dation in the	Dirida hath name of the notic her one of the	7
4. Ratios in the	pumbers to make one part equal 1	$5:7 = 1:\frac{1}{5}$ in the form $1:n$
n: 1	numbers to make one part equal 1.	$5:7 = \frac{5}{7}:1$ in the form n : 1
<i>n</i> · 1		/
5. Sharing in a	1. Add the total parts of the ratio.	Share $\pounds 60$ in the ratio $3:2:1$.
Ratio	2. Divide the amount to be shared by this	
	value to find the value of one part.	3 + 2 + 1 = 6
	3. Multiply this value by each part of the	$60 \div 6 = 10$ 2 x 10 - 20 2 x 10 - 20 1 x 10 - 10
		$5 \times 10 = 50, 2 \times 10 = 20, 1 \times 10 = 10$ f 30 · f 20 · f 10
	Use only if you know the total .	
6. Proportional	Comparing two things using multiplicative	X 2
Reasoning	reasoning and applying this to a new	
	situation.	30 minutes 60 pages
	Identify and multiplicative light and use this	? minutes 150 pages
	to find missing quantities	×2
7. Unitary	Finding the value of a single unit and then	$\frac{2}{3}$ cakes require 450g of sugar to make.
Method	finding the necessary value by multiplying	Find how much sugar is needed to
	the single unit value.	make 5 cakes.
		3 cakes = 450 g
		So 1 cake = $150g (\div by 3)$ So 5 cakes = $750g (y by 5)$
8 Ratio	Find what one part of the ratio is worth	SO 5 Cakes $= 750$ g (X by 5) Money was shared in the ratio 3.2.5
already shared	using the unitary method .	between Ann. Bob and Cat. Given that
		Bob had $\pounds 16$, found out the total
		amount of money shared.
		$\pm 16 = 2$ parts
		$50 t \delta = 1 \text{ part}$ $3 \pm 2 \pm 5 = 10 \text{ parts}$ so $8 \times 10 = 500$
9 Best Buys	Find the unit cost by dividing the price by	$5 \pm 2 \pm 5 = 10$ parts, so $6 \times 10 = \pm 60$ 8 cakes for f1 28 \rightarrow 16n each (\pm hy 8)
J. Dest Duys	the quantity.	13 cakes for $\pounds 2.05 \rightarrow 15.8n \text{ each} (\div by 8)$
	The lowest number is the best value.	13)
		Pack of 13 cakes is best value.

Topic: Proportion

Topic/Skill	Definition/Tips	Example
1. Direct	If two quantities are in direct proportion,	V 🛦
Proportion	as one increases, the other increases by	$\sqrt{v-kr}$
	the same percentage.	$y = \kappa x$
	If y is directly proportional to x , this can	\leftarrow
	be written as $y \propto x$	x
	An equation of the form $y = kx$ represents	
	direct proportion, where k is the constant	•
	of proportionality.	
2. Inverse	If two quantities are inversely proportional,	<i>У</i> ↑ ,
Proportion	as one increases, the other decreases by	k
	the same percentage.	y = -
	If y is inversely proportional to x, this can 1	× ×
	be written as $y \propto \frac{1}{x}$	~
	An equation of the form $y = \frac{k}{r}$ represents	Ļ
	inverse proportion.	
3. Using	Direct : $\mathbf{v} = \mathbf{k}\mathbf{x}$ or $\mathbf{v} \propto \mathbf{x}$	p is directly proportional to q.
proportionality		When $p = 12$, $q = 4$.
formulae	Inverse: $\mathbf{v} = \frac{k}{2}$ or $\mathbf{v} \propto \frac{1}{2}$	Find p when $q = 20$.
	$\prod_{x \in Y} \sum_{x \in Y} \sum_{x$	
	1 Solve to find k using the pair of values	1. $\mathbf{p} = \mathbf{kq}$
	in the question	$12 = k \times 4$
	2. Rewrite the equation using the k you	so k = 3
	have just found.	
	3. Substitute the other given value from	2. $p = 3q$
	the question in to the equation to find the	3 - n - 3 - 3 - 60 - 60 - 60 - 60
	missing value.	$3. p = 3 \times 20 = 00, so p = 00$
4. Direct	Graphs showing direct proportion can be	Direct Proportion Graphs
Proportion	written in the form $y = kx^n$	$y = 3x^2$
with powers	Direct proportion graphs will always start	e
	at the origin.	/ y = 2x
		· ///
		2
		$y = 0.5x^5$
5. Inverse	Graphs showing inverse proportion can	Inverse Proportion Graphs
Proportion	be written in the form $y = \frac{k}{r}$	$y = \frac{2}{x}$
with powers	Inverse proportion graphs will never start	$y = \frac{3}{\lambda^2}$
	at the origin.	
	C C	4
		$y = \frac{0.5}{x^2}$
		0

Topic: Compound Measures

Topic/Skill	Definition/Tips	Example
1. Metric	A system of measures based on:	1kilometres = 1000 metres
System		1 metre = 100 centimetres
	- the metre for length	$1 \ centimetre = 10 \ millimetres$
	- the kilogram for mass	
	- the second for time	1 kilogram = 1000 grams
	Length: mm, cm, m, km	
	Mass: mg, g, kg	
	Volume: ml, cl, l	
2. Imperial	A system of weights and measures	1lb = 16 ounces
System	originally developed in England, usually	1 foot = 12 inches
	based on human quantities	$1 \ gallon = 8 \ pints$
	Length: inch, foot, yard, miles	
	Mass: lb, ounce, stone	
	Volume: pint, gallon	
3. Metric and	Use the unitary method to convert	$5 \text{ miles} \approx 8 \text{ kilometres}$
Imperial Units	between metric and imperial units.	$1 \text{ gallon} \approx 4.5 \text{ litres}$
		$2.2 \ pounds \approx 1 \ kilogram$
		1 inch = 2.5 centimetres
4. Speed,	Speed = Distance ÷ Time	Speed = 4mph
Distance,	Distance = Speed x Time	Time = 2 hours
Time	Time = Distance ÷ Speed	
		Find the Distance.
		$D = C \times T = A \times 2 = 0$ miles
		$D = 3 \times T = 4 \times 2 = 8$ miles
	S T	
	Remember the correct units.	
5. Density,	Density = Mass ÷ Volume	Density = 8kg/m^3
Mass, Volume	Mass = Density x Volume	Mass = 2000g
	Volume = Mass ÷ Density	
		Find the Volume.
	∧	
	/M	$V = M \div D = 2 \div 8 = 0.25m^{\circ}$
	Demonstration (1)	
C Dura	Remember the correct units.	December 10 Decemb
o. Pressure,	Pressure = Force ÷ Area	Pressure = 10 Pascals
Force, Area	Force = Pressure x Area	$Area = 0 \text{ cm}^2$
	Area = Force ÷ Pressure	Find the Force
		rind the Force

	F p X A	$F = P \times A = 10 \times 6 = 60 N$
7. Distance-	Remember the correct units. You can find the speed from the gradient of the line (Distance – Time)	Distance (Km)
	The steeper the line, the quicker the speed. A horizontal line means the object is not moving (stationary).	

Topic: Angles

Topic/Skill	Definition/Tips	Example
1. Types of	Acute angles are less than 90°.	
Aligies	Obtuse angles are greater than 90° but less	
	than 180°.	Acute Right Obtuse Reflex
	Reflex angles are greater than 180° but less	
	than 360°.	B
2. Angle Notation	Can use one lower-case letters, eg. θ or x	
Notation	Can use three upper-case letters, eg. BAC	
		$A \longleftrightarrow$
		C
3. Angles at a	Angles around a point add up to 360°.	
Point	9	da
		c b
4 4 1		$a+b+c+d=360^{\circ}$
4. Angles on a Straight Line	Angles around a point on a straight line add up to 180°	/
Straight Line	aud up to 100 .	x v
		$x + y = 180^{\circ}$
5. Opposite	Vertically opposite angles are equal.	x v
Angles		y x
6 Alternate	Altornata angles are equal	
Angles	They look like Z angles, but never say this	y x
0	in the exam.	
		x v
7. Corresponding	Corresponding angles are equal.	\xrightarrow{y}
Angles	in the exam.	
8. Co-Interior	Co-Interior angles add up to 180°.	
Angles	They look like C angles, but never say this	<i>y</i> / <i>x</i>
		xy
		· · · · ·

9. Angles in a Triangle	Angles in a triangle add up to 180°.	B 45 ° 55°
10. Types of Triangles	 Right Angle Triangles have a 90° angle in. Isosceles Triangles have 2 equal sides and 2 equal base angles. Equilateral Triangles have 3 equal sides and 3 equal angles (60°). Scalene Triangles have different sides and different angles. Base angles in an isosceles triangle are equal. 	Right Angled Isosceles
11. Angles in a Quadrilateral	Angles in a quadrilateral add up to 360°.	65° 93°
12. Polygon	A 2D shape with only straight edges .	Rectangle, Hexagon, Decagon, Kite etc.
13. Regular	A shape is regular if all the sides and all the angles are equal .	
14. Names of Polygons	3-sided = Triangle 4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon 7-sided = Heptagon/Septagon 8-sided = Octagon 9-sided = Nonagon 10-sided = Decagon	Triangle Quadrilateral Pentagon Hexagon Heptagon Octagon Nonagon Decagon
15. Sum of Interior Angles	$(n-2) \times 180$ where n is the number of sides.	Sum of Interior Angles in a Decagon = $(10 - 2) \times 180 = 1440^{\circ}$
16. Size of Interior Angle in a Regular Polygon	$\frac{(n-2) \times 180}{n}$ You can also use the formula:	Size of Interior Angle in a Regular Pentagon = $\frac{(5-2) \times 180}{5} = 108^{\circ}$

	180 – Size of Exterior Angle	
17. Size of Exterior Angle in a Regular	$\frac{360}{n}$	Size of Exterior Angle in a Regular Octagon = 360
Polygon	You can also use the formula: 180 – <i>Size of Interior Angle</i>	$\frac{1}{8} = 45^{\circ}$

Topic: Bearings and Scale Diagrams

Topic/Skill	Definition/Tips	Example
1. Scale	The ratio of the length in a model to the length of the real thing.	Real Horse Drawn Horse
		1500 mm high 150 mm high 2000 mm long 200 mm long
2. Scale (Map)	The ratio of a distance on the map to the actual distance in real life .	1 in. = 250 mi 1 cm = 160 km
3. Bearings	 Measure from North (draw a North line) Measure clockwise Your answer must have 3 digits (eg. 047°) Look out for where the bearing is measured 	The bearing of \underline{B} from \underline{A}
	from.	The bearing of \underline{A} from \underline{B}
4. Compass Directions	You can use an acronym such as 'Never Eat Shredded Wheat' to remember the order of the compass directions in a clockwise direction.	
	Bearings: $NE = 045^\circ$, $W = 270^\circ etc$.	SW SE

Topic: Properties of Polygons

Topic/Skill	Definition/Tips	Example
1. Square	Four equal sides	
1	 Four right angles 	
	Onnosite sides narallel	
	• Diagonals hisset each other at right	
	angles	
	• Four lines of symmetry	
	Potational symmetry of order four	
2 Destangle	Kotational symmetry of order four	
2. Rectangle	• I wo pairs of equal sides	
	• Four right angles	
	• Opposite sides parallel	
	• Diagonais disect each other, not at right	
	angles	
	• I wo lines of symmetry of order two	
2 Dhombus	• Kotational symmetry of order two	
5. Khombus	• Four equal sides	
	• Diagonany opposite angles are equal	
	• Opposite sides parallel • Diagonals bigast such other at right	$\langle \rangle$
	• Diagonais disect each other at right	\searrow \checkmark
	angles	
	• I wo lines of symmetry of order two	
4	• Kotational symmetry of order two	// >>
4.	• I wo pairs of equal sides	
Parallelogram	• Diagonally opposite angles are equal	
	• Opposite sides parallel	t t
	• Diagonais disect each other, not at right	
	angles	
	• No miles of symmetry • Dotational symmetry of order two	
5 Kito	• Notational symmetry of order two	
J. KIC	longth	\times
	• One pair of diagonally apposite angles	$\langle \rangle$
	are equal (where different length sides	
	meet)	
	• Diagonals intersect at right angles but	
	do not bisect	
	• One line of symmetry	
	No rotational symmetry	
6 Trapezium	One nair of narallel sides	
5. mapezium	No lines of symmetry	
	No notational symmetry	
	• INO FOLAHOITAI SYIIIMELEY	
	Special Case: Isosceles Trapeziums have	
	one line of symmetry	
	one mie of symmetry.	

Topic: Pythagoras' Theorem

Topic/Skill	Definition/Tips	Example
1. Pythagoras'	For any right angled triangle :	Finding a Shorter Side
Theorem	$a^2 + b^2 = c^2$	y 10 subtract!
	a	8 a = y, b = 8, c = 10
	b	$a^{2} = c^{2} - b^{2}$ $y^{2} = 100 - 64$ $y^{2} = 36$
	Used to find missing lengths .	v = 6
	a and b are the shorter sides, c is the	<i>y</i> = 0
	hypotenuse (longest side).	
2. 3D	Find missing lengths by identifying right	Can a pencil that is 20cm long fit in a
Pythagoras'	angled triangles.	pencil tin with dimensions 12cm, 13cm
Theorem		and 9cm? The pencil tin is in the shape
	You will often have to find a missing	of a cuboid.
	length you are not asked for before finding	
	the missing length you are asked for.	Hypotenuse of the base =
		$\sqrt{12^2 + 13^2} = 17.7$
		Diagonal of cuboid = $\sqrt{17.7^2 + 9^2}$ =
		19.8 <i>cm</i>
		No, the pencil cannot fit.

Topic: Congruence and Similarity

Topic/Skill	Definition/Tips	Example
1. Congruent Shapes	Shapes are congruent if they are identical - same shape and same size .	
	Shapes can be rotated or reflected but still be congruent.	
2. Congruent Triangles	4 ways of proving that two triangles are congruent:	$A \underbrace{\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$
	 SSS (Side, Side, Side) RHS (Right angle, Hypotenuse, Side) SAS (Side, Angle, Side) ASA (Angle, Side, Angle) or AAS 	$BC = DF$ $\angle ABC = \angle EDF$
	ASS does not prove congruency.	$\angle ACB = \angle EFD$ \therefore The two triangles are congruent by AAS.
3. Similar Shapes	Shapes are similar if they are the same shape but different sizes .	
	The proportion of the matching sides must be the same, meaning the ratios of corresponding sides are all equal.	
4. Scale Factor	The ratio of corresponding sides of two similar shapes.	16 10 15
	To find a scale factor, divide a length on one shape by the corresponding length on a similar shape.	Scale Factor = $15 \div 10 = 1.5$
5. Finding missing lengths in similar shapes	 Find the scale factor. Multiply or divide the corresponding side to find a missing length. 	4.5cm 3cm
	If you are finding a missing length on the larger shape you will need to multiply by the scale factor.	
	If you are finding a missing length on the smaller shape you will need to divide by the scale factor.	Scale Factor = $3 \div 2 = 1.5$ x = $4.5 \times 1.5 = 6.75cm$
6. Similar Triangles	To show that two triangles are similar, show that:	y 85°
	 The three sides are in the same proportion Two sides are in the same proportion 	40° x z Y
	and their included angle is the same 3. The three angles are equal	85°
		55° X Z

Topic: Loci and Constructions

Topic/Skill	Definition/Tips	Example
1. Parallel	Parallel lines never meet.	
2.	Perpendicular lines are at right angles.	
Perpendicular	There is a 90° angle between them.	
3 Vertex	A corner or a point where two lines meet	vertex
J. Venex	A conter of a point where two fines meet.	AR
		B C
4. Angle	Angle Bisector: Cuts the angle in half.	
Bisector		
	1. Place the sharp end of a pair of compasses on the vertex	
	2. Draw an arc, marking a point on each	
	line.	
	3. Without changing the compass put the	Angle Bisector
	compass on each point and mark a centre	THEFT DISCOUT
	point where two arcs cross over.	
	4. Use a ruler to draw a line through the	
	vertex and centre point.	
5.	Perpendicular Bisector: Cuts a line in	
Perpendicular	half and at right angles.	X
Bisector		
	1. Put the sharp point of a pair of	Line Bisector
	compasses on A.	
	line.	A B
	3. Draw an arc above and below the line.	× /
	4. Without changing the compass, repeat	X
	from point B.	
	5. Draw a straight line through the two	
6	The nernendicular distance from a point	
O. Perpendicular	to a line is the shortest distance to that	p
from an	line.	
External Point		\wedge
	1. Put the sharp point of a pair of	
	compasses on the point.	
	2. Draw an arc that crosses the line twice.	× .
	one of these points open over half way and	
	draw an arc above and below the line.	
	4. Repeat from the other point on the line.	

	5. Draw a straight line through the two	
	intersecting arcs.	
7.	Given line PQ and point R on the line:	\sim
Perpendicular		
from a Point	1. Put the sharp point of a pair of	
on a Line	compasses on point R.	
	2. Draw two arcs either side of the point of	
	equal width (giving points S and T)	P' S' R $T'Q$
	3. Place the compass on point S, open over	
	halfway and draw an arc above the line.	
	4. Repeat from the other arc on the line	
	(point T).	
	5. Draw a straight line from the	
	intersecting arcs to the original point on the	
	line.	
8.	1. Draw the base of the triangle using a	
Constructing	ruler.	
Triangles	2. Open a pair of compasses to the width of	
(Side, Side,	one side of the triangle.	
Side)	3. Place the point on one end of the line	
	and draw an arc.	
	4. Repeat for the other side of the triangle	
	at the other end of the line.	
	5. Using a ruler, draw lines connecting the	
	ends of the base of the triangle to the point	
	where the arcs intersect.	
9.	1. Draw the base of the triangle using a	Α
Constructing	ruler.	\sim
Triangles	2. Measure the angle required using a	Arm
(Side, Angle,	protractor and mark this angle.	
Side)	3. Remove the protractor and draw a line	
	of the exact length required in line with the	в <u>/50°</u> С
	angle mark drawn.	7cm
	4. Connect the end of this line to the other	
	end of the base of the triangle.	
10.	1. Draw the base of the triangle using a	×
Constructing	ruler.	\sim
Triangles	2. Measure one of the angles required	
(Angle, Side,	using a protractor and mark this angle.	
Angle)	3. Draw a straight line through this point	
_	from the same point on the base of the	y 42° 51° Z
	triangle.	8.3cm
	4. Repeat this for the other angle on the	
	other end of the base of the triangle.	

11. Constructing an Equilateral Triangle (also makes a 60° angle)	 Draw the base of the triangle using a ruler. Open the pair of compasses to the exact length of the side of the triangle. Place the sharp point on one end of the line and draw an arc. Repeat this from the other end of the line. Using a ruler, draw lines connecting the ends of the base of the triangle to the point where the arcs intersect. 	A B
12. Loci and Regions	A locus is a path of points that follow a rule. For the locus of points closer to B than A, create a perpendicular bisector between A and B and shade the side closer to B.	A B Points Closer to B than A
	For the locus of points equidistant from A , use a compass to draw a circle , centre A.	Points less than 2cm from A Points more than 2cm from A
	For the locus of points equidistant to line X and line Y , create an angle bisector .	Y
	For the locus of points a set distance from a line , create two semi-circles at either end joined by two parallel lines .	D E
13. Equidistant	A point is equidistant from a set of objects if the distances between that point and each of the objects is the same .	

Topic/Skill Definition/Tips Example 1. Coordinates Written in pairs. The first term is the x-A: (4,7) coordinate (movement across). The B: (-6,-3) second term is the y-coordinate (movement **up or down**) -10 -8 -6 -4 ●B 2. Midpoint of Method 1: add the x coordinates and Find the midpoint between (2,1) and a Line divide by 2, add the y coordinates and (6,9)divide by 2 $\frac{2+6}{2} = 4$ and $\frac{1+9}{2} = 5$ Method 2: Sketch the line and find the values half way between the two x and two So, the midpoint is (4,5)y values. Straight line graph. Example: 3. Linear Graph Other The general equation of a linear graph is examples: v = mx + cx = yy = 4where *m* is the gradient and *c* is the yx = -2intercept. y = 2x - 7y + x = 10The **equation** of a linear graph can contain 2y - 4x = 12an x-term, a y-term and a number. Method 1: Table of Values 4. Plotting 0 1 2 3 -3 -2 -1 Construct a table of values to calculate Linear Graphs coordinates. x + 30 3 4 5 6 Method 2: Gradient-Intercept Method (use when the equation is in the form y =mx + c) 1. Plots the y-intercept 2. Using the gradient, plot a second point. 3. Draw a line through the two points plotted. Method 3: Cover-Up Method (use when the equation is in the form ax + by = c) 1. Cover the *x* term and solve the resulting equation. Plot this on the x - axis. 2. Cover the *y* term and solve the resulting equation. Plot this on the y - axis. 2x + 4y = 83. Draw a line through the two points plotted.

Topic: Coordinates and Linear Graphs

		7
5. Gradient	The gradient of a line is how steep it is.	Gradient = $4/2 = 2$
	Gradient –	
	Change in v Rise	4 Gradient3/13
	$\frac{\frac{1}{2}}{\frac{1}{2}} \frac{1}{2} $	
	Change th x Kan	-2 2 1
	The gradient can be positive (sloping	
	upwards) or negative (sloping downwards)	
6. Finding the	Substitute in the gradient (m) and point	Find the equation of the line with
Equation of a	(\mathbf{x},\mathbf{y}) in to the equation $\mathbf{y} = \mathbf{m}\mathbf{x} + \mathbf{c}$ and	gradient 4 passing through $(2,7)$.
Line given a	solve for c.	
point and a		y = mx + c
gradient		$7 = 4 \times 2 + c$
		c = -1
		y = 4x - 1
7. Finding the	Use the two points to calculate the	Find the equation of the line passing
Equation of a	gradient. Then repeat the method above	through (6,11) and (2,3)
Line given two	using the gradient and either of the points.	11 0
points		$m = \frac{11-5}{6} = 2$
		6 – 2
		$y = mr \pm c$
		y = mx + c 11 = 2 × 6 + c
		c = -1
		$\mathbf{c} = 1$
		y = 2x - 1
8. Parallel	If two lines are parallel , they will have the	Are the lines $y = 3x - 1$ and $2y - 1$
Lines	same gradient. The value of m will be the	6x + 10 = 0 parallel?
	same for both lines.	
		Answer:
		Rearrange the second equation in to the
		form $y = mx + c$
		$2y - 6x + 10 = 0 \rightarrow y = 3x - 5$
		Since the two gradients are equal (3), the lines are parallel
		the miles are paramet.
9.	If two lines are perpendicular . the	Find the equation of the line
Perpendicular	product of their gradients will always	perpendicular to $y = 3x + 2$ which
Lines	equal -1.	passes through (6,5)
	The gradient of one line will be the	
	negative reciprocal of the gradient of the	Answer:
	other line.	As they are perpendicular, the gradient
		of the new line will be $-\frac{1}{2}$ as this is the
	You may need to rearrange equations of	negative reciprocal of 3.
	lines to compare gradients (they need to be	
	In the form $y = mx + c$	y = mx + c

	$5 = -\frac{1}{3} \times 6 + c$
	c = 7
	$y = -\frac{1}{3}x + 7$
	Or
	3x + x - 7 = 0

Topic: Circumference and Area

Definition/Tips	Example
A circle is the locus of all points equidistant from a central point.	•
Radius – the distance from the centre of a	Parts of a Circle
circle to the edge Diameter – the total distance across the width of a circle through the centre. Circumference – the total distance around the outside of a circle	Radius Diameter Circumference
Chord – a straight line whose end points lie on a circle Tangent – a straight line which touches a circle at exactly one point Arc – a part of the circumference of a	Chord Arc Tangent
circle Sector – the region of a circle enclosed by two radii and their intercepted arc Segment – the region bounded by a chord and the arc created by the chord	Segment Sector
$A = \pi r^2$ which means 'pi x radius	If the radius was 5cm, then:
squared'. $C = \pi d$ which means 'pi x diameter'	$A = \pi \times 5^{2} = 78.5 cm^{2}$ If the radius was 5cm, then: $C = \pi \times 10 = 31.4 cm$
Pi is the circumference of a circle divided by the diameter. $\pi \approx 3.14$	$\begin{array}{c c} \mathbf{S} \cdot \mathbf{VAR} & \mathbf{p} & \mathbf{DISTR} & \mathbf{n} & \mathbf{p} \cdot \mathbf{Z} \cdot \mathbf{p} & \mathbf{Pol} \\ \hline 2 & 3 & \mathbf{+} \\ \mathbf{Ran}^{\#} & \mathbf{\pi} & \mathbf{DRG} \\ \bullet & \mathbf{EXP} & \mathbf{Ans} \end{array}$
The arc length is part of the circumference. Take the angle given as a fraction over 360 ° and multiply by the circumference .	Arc Length = $\frac{115}{360} \times \pi \times 8 = 8.03cm$
The area of a sector is part of the total area. Take the angle given as a fraction over 360 ° and multiply by the area .	Area = $\frac{115}{360} \times \pi \times 4^2 = 16.1 cm^2$
	A circle is the locus of all points equidistant from a central point. Radius – the distance from the centre of a circle to the edge Diameter – the total distance across the width of a circle through the centre . Circumference – the total distance around the outside of a circle Chord – a straight line whose end points lie on a circle Tangent – a straight line which touches a circle at exactly one point Arc – a part of the circumference of a circle Sector – the region of a circle enclosed by two radii and their intercepted arc Segment – the region bounded by a chord and the arc created by the chord $A = \pi r^2$ which means 'pi x radius squared'. $C = \pi d$ which means 'pi x diameter' Pi is the circumference of a circle divided by the diameter. $\pi \approx 3.14$ The arc length is part of the circumference. Take the angle given as a fraction over 360 ° and multiply by the circumference .

8. Surface	Curved Surface Area = πdh or $2\pi rh$	
Area of a		
Cylinder	Total SA = $2\pi r^2 + \pi dh$ or $2\pi r^2 + 2\pi rh$	5
		2
		$Total SA = 2\pi(2)^2 + \pi(4)(5) = 28\pi$
9. Surface	Curved Surface Area = πrl	//
Area of a Cone	where $l = slant \ height$	5m
	Total SA = $\pi r l + \pi r^2$	
	You may need to use Pythagoras' Theorem	3m
	to find the slant height	$Total SA = \pi(3)(5) + \pi(3)^2 = 24\pi$
10. Surface	$SA = 4\pi r^2$	Find the surface area of a sphere with
Area of a		radius 3cm.
Sphere	Look out for hemispheres – halve the SA of	
	a sphere and add on a circle (πr^2)	$SA = 4\pi(3)^2 = 36\pi cm^2$

Topic: Shape Transformations

Topic/Skill	Definition/Tips	Example
1. Translation	Translate means to move a shape . The shape does not change size or orientation .	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2. Column Vector	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-)	$\binom{2}{3}$ means '2 right, 3 up' $\binom{-1}{5}$ means '1 left, 5 down'
3. Rotation	The size does not change, but the shape is turned around a point .	Rotate Shape A 90° anti-clockwise about (0,1)
	Use tracing paper.	х. У.
4. Reflection	The size does not change, but the shape is 'flipped' like in a mirror. Line $x =$? is a vertical line. Line $y =$? is a horizontal line. Line $y = x$ is a diagonal line.	Reflect shape C in the line $y = x$
5. Enlargement	The shape will get bigger or smaller . Multiply each side by the scale factor .	Scale Factor = 3 means '3 times larger = multiply by 3' Scale Factor = ½ means 'half the size = divide by 2'

6. Finding the Centre of Enlargement	Draw straight lines through corresponding corners of the two shapes. The centre of enlargement is the point where all the lines cross over . Be careful with negative enlargements as the corresponding corners will be the other way around.	A to B is an enlargement SF 2 about the point (2,1)
7. Describing Transformatio ns	 Give the following information when describing each transformation: Look at the number of marks in the question for a hint of how many pieces of information are needed. If you are asked to describe a 'transformation', you need to say the name of the type of transformation as well as the other details. 	 Translation, Vector Rotation, Direction, Angle, Centre Reflection, Equation of mirror line Enlargement, Scale factor, Centre of enlargement
8. Negative Scale Factor Enlargements	Negative enlargements will look like they have been rotated. SF = -2 will be rotated, and also twice as big.	Enlarge ABC by scale factor -2, centre (1,1)
9. Invariance	A point, line or shape is invariant if it does not change/move when a transformation is performed. An invariant point 'does not vary'.	If shape P is reflected in the $y - axis$, then exactly one vertex is invariant.

Topic: Right Angled Trigonometry

Example **Topic/Skill Definition/Tips** 1. Net A pattern that you can **cut and fold** to 1 make a model of a 3D shape. 2 3 4 5 6 2. Properties of **Faces** = **flat surfaces** A cube has 6 faces, 12 edges and 8 Solids Edges = sides/lengths vertices. Vertices = corners This takes 3D drawings and produces 2D 3. Plans and Original 3D Drawing Elevations drawings. Plan View: from above Side Elevation: from the side Front Elevation: from the front 2D Drawings Side Elevation Plan Front Elevation 4. Isometric A method for visually **representing 3D** ÷ Drawing objects in 2D.

Topic: 2D Representations of 3D Shapes

Topic: Volume

Topic/Skill	Definition/Tips	Example
1. Volume	Volume is a measure of the amount of	
	space inside a solid shape. Units: mm^3 , cm^3 , m^3 etc.	
2. Volume of a	V = Length imes Width imes Height	in the second se
Cube/Cuboid	V = L imes W imes H	вст
	Van een else wee the Velume of a Drive	
	formula for a cube/cuboid	3 cm
		Scm Scm
		volume = $6 \times 5 \times 3$ = 90 cm^3
3. Prism	A prism is a 3D shape whose cross section	
	is the same throughout.	
		Rectangle Prism Cube
		Triangle Prism
		Pentagonal Prism
4. Cross	The cross section is the shape that	
Section	continues all the way through the prism.	
		Cross Section
5. Volume of a	$V = Area of Cross Section \times Length$	
Prism	$V = A \times L$	
		Area of Cross Section
		Length
6. Volume of a	$V = \pi r^2 h$	
Cylinder	$\mathbf{v} = \mathbf{n} \mathbf{r} \mathbf{n}$	
		5cm
		$V = \pi(4)(5)$
		$= 62.8 cm^3$
7. Volume of a Cone	$V = \frac{1}{3}\pi r^2 h$	\wedge
		2cm 5cm
		$V = \frac{1}{3}\pi(4)(5)$
		$= 20.9 cm^{3}$
	·	

8. Volume of a Pyramid	$Volume = \frac{1}{3}Bh$	
	where $\mathbf{B} = \text{area of the base}$	
		6cm 6cm
		$V = \frac{1}{3} \times 6 \times 6 \times 7 = 84 cm^3$
9. Volume of a Sphere	$V = \frac{4}{3}\pi r^3$	Find the volume of a sphere with diameter 10cm.
	Look out for hemispheres – just halve the volume of a sphere.	$V = \frac{4}{3}\pi(5)^3 = \frac{500\pi}{3}cm^3$
10. Frustums	A frustum is a solid (usually a cone or pyramid) with the top removed .	24cm
	Find the volume of the whole shape, then take away the volume of the small cone/pyramid removed at the top.	5cm
		$V = \frac{1}{3}\pi(10)^2(24) - \frac{1}{3}\pi(5)^2(12)$ = 700\pi cm^3

		Topic: Circle Theorems
Topic/Skill	Definition/Tips	Example
Circle Theorem 1	Angles in a semi-circle have a right angle at the circumference.	$y = 90^{\circ}$
Circle Theorem 2	Opposite angles in a cyclic quadrilateral add up to 180°. $a+c=180^{\circ}$ $b+d=180^{\circ}$	$x = 180 - 90 - 38 = 52^{\circ}$ $x = 180 - 83 = 97^{\circ}$ $y = 180 - 92 = 88^{\circ}$
Circle Theorem 3	The angle at the centre is twice the angle at the circumference.	$x = 104 \div 2 = 52^{\circ}$
Circle Theorem 4	Angles in the same segment are equal.	$x = 42^{\circ}$ $y = 31^{\circ}$
Circle Theorem 5	A tangent is perpendicular to the radius at the point of contact.	y = 5cm (Pythagoras' Theorem)

Circle	Tangents from an external point at equal	
Theorem 6	in length.	4cm
		$x = 90^{\circ}$
Circle	Alternate Segment Theorem	
Theorem 7		x . y 52°
		$x = 52^{\circ}$ $y = 38^{\circ}$

Topic: Trigonometry

Topic/Skill	Defini	ition/T	ips				Example
1. Exact		0°	<u>30°</u>	45°	60°	90°	F
Values for	sin	0	1		./2	1	30'
Angles in	5111	v	<u>-</u>	$\frac{\sqrt{2}}{\sqrt{2}}$	<u>vs</u>	1	45'
Trigonometry		-		2	2		$\sqrt{2}$ $\sqrt{3}$ 2
ringonometry	cos	1	$\sqrt{3}$	√2	<u> </u>	0	
			2	2	2		45*
	tan	0	1	1	$\sqrt{3}$		
			$\sqrt{3}$				
2. Sine Rule	Use w	ith nor	right a	angle t	riangle	s.	
	Use w	hen the	e questio	on invo	lves 2	sides	/85 5.2cm
	and 2	angles					
		0					
	For m	issing s	side:				46°
		U	а	b			<u>x</u>
			sin A	$=\frac{1}{\sin^2}$	R		x = 5.2
			511171	5111	D		$\overline{\sin 85} - \overline{\sin 46}$
	For m	issing a	angle:				
		0	sin A	sin	B		$r = \frac{5.2 \times \sin 85}{2} = 3.75 cm$
			<u> </u>	= $-h$			x = sin 46
			u	D			
							85
	There	is an a	mbiguo	ous cas	e (whei	e there	
	are two potential answers)			Ì	1.9m		
		1		,			
					В		2.4m
					n.,		
					<u>\</u>		$\sin \theta \sin 85$
			10cm	/ ;	i T		$\frac{1.9}{1.9} = \frac{2.4}{2.4}$
				$6cm^{1}$	6cm	n	
			100	/	````		$\sin \theta = \frac{1.9 \times \sin 85}{0.0000} = 0.780$
		A^{2}	40	/	-C		$\sin \theta = \frac{1}{2.4} = 0.789$
				-	-		
	To fin	d the ty	vo angle	es. use	sine to	find one.	$\theta = sin^{-1}(0.789) = 52.1^{\circ}$
	and th	en sub	tract vo	our ans	wer fr	om 180	
	to find	the ot	her ansv	ver.			
3. Cosine Rule	Use w	ith nor	n right a	angle t	riangle	s.	As a s
	Use w	hen the	e questio	on invo	lves 3	sides	85 9.6
	and 1	angle.					7.8
		C					
	For m	issing s	side:				
		$a^2 =$	$= b^2 + c$	$c^2 - 2i$	bccos	1	
							$x^2 = 9.6^2 + 7.8^2 - (2 \times 9.6 \times 7.8)$
	For m	issing a	angle:				× cos 85)
		U	Ľ	$b^2 + c^2$	$-a^{2}$		x = 11.8
		CO	$\mathbf{s} A = \tilde{-}$	24	<u> </u>		
				40	L		

Topic: Graphs and Graph Transformations

Topic/Skill	Definition/Tips	Example
1. Coordinates	Written in pairs . The first term is the x - coordinate (movement across). The second term is the y-coordinate (movement up or down)	A: (4,7) B: (-6,-3) A: (4,7) B: (-6,-3) B: (-6,-3) B: (-6,-3)
2. Linear Graph	Straight line graph. The equation of a linear graph can contain an x-term, a y-term and a number.	Example: Other examples: x = y y = 4 x = -2 y = 2x - 7 y + x = 10 2y - 4x = 12
3. Quadratic Graph	A 'U-shaped' curve called a parabola. The equation is of the form $y = ax^2 + bx + c$, where <i>a</i> , <i>b</i> and <i>c</i> are numbers, $a \neq 0$. If $a < 0$, the parabola is upside down.	$y + y = x^{2-4x-5}$ -1 (2, -9)
4. Cubic Graph	The equation is of the form $y = ax^3 + k$, where k is an number. If $a > 0$, the curve is increasing. If $a < 0$, the curve is decreasing.	
5. Reciprocal Graph	The equation is of the form $y = \frac{A}{x}$, where <i>A</i> is a number and $x \neq 0$. The graph has asymptotes on the x-axis and y-axis.	y = 1/x
6. Asymptote	A straight line that a graph approaches but never touches .	horizontal asymptote

7. Exponential Graph	The equation is of the form $y = a^x$, where <i>a</i> is a number called the base . If $a > 1$ the graph increases . If $0 < a < 1$, the graph decreases . The graph has an asymptote which is the x -axis	
8. $y = \sin x$	Key Coordinates: (0,0), (90,1), (180,0), (270, -1), (360,0) y is never more than 1 or less than -1. Pattern repeats every 360°.	y 1.0 90° 180° 270° 360° 450° 540° 630° 720° 1.0
9. $y = \cos x$	Key Coordinates: (0, 1), (90, 0), (180, -1), (270, 0), (360, 1) y is never more than 1 or less than -1. Pattern repeats every 360°.	graph of y = cosine 0 90 180° 270° 360° 450° 540° 630° 720° 1.0
10. $y = \tan x$	Key Coordinates: (0, 0), (45, 1), (135, -1), (180, 0), (225, 1), (315, -1), (360, 0) Asymptotes at $x = 90$ and $x = 270$ Pattern repeats every 360°.	y graph of y = tan θ 6 4 2 0 90° 180° 270° 360° 450° 540° 630° 720° -2 -4
11. $f(x) + a$	Vertical translation up a units. $\begin{pmatrix} 0 \\ a \end{pmatrix}$	$ \begin{array}{c} f(x) \\ y \\ f(x) \\ f(x)$
12. $f(x + a)$	Horizontal translation $\frac{\text{left}}{0}$ a units. $\begin{pmatrix} -a \\ 0 \end{pmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
13. $-f(x)$	Reflection over the x-axis.	-f(x)
14. $f(-x)$	Reflection over the y-axis .	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Topic: Area Under Graph and Gradient of Curve

Topic/Skill	Definition/Tips	Example
1. Area Under a Curve	To find the area under a curve, split it up into simpler shapes – such as rectangles, triangles and trapeziums – that approximate the area.	50 40 40 40 40 40 40 40 40 40 4
2. Tangent to a Curve	A straight line that touches a curve at exactly one point .	Y Tangent line
3. Gradient of a Curve	 The gradient of a curve at a point is the same as the gradient of the tangent at that point. 1. Draw a tangent carefully at the point. 2. Make a right-angled triangle. 3. Use the measurements on the axes to calculate the rise and run (change in y and change in x) 4. Calculate the gradient. 	$Gradient = \frac{Change in y}{Change in x}$ $= \frac{16}{2} = 8$

4. Rate of	The rate of change at a particular instant in	70
Change	time is represented by the gradient of the	50
	tangent to the curve at that point.	
		0 2 4 6 8
		Time (s)
		70
		Negative rate
		E 40 of change
		30
		₽ 20
		0 2 4 6 8
		Time (s)
5. Distance-	You can find the speed from the gradient	4
Time Graphs	of the line (Distance ÷ Time)	Distance (Km) 3
	The steeper the line, the quicker the speed.	2
	A horizontal line means the object is not	
	moving (stationary).	
		$\frac{1}{10000000000000000000000000000000000$
6. Velocity-	You can find the acceleration from the	
Time Graphs	gradient of the line (Change in Velocity ÷	Velocity
1	Time)	(m/s)
	The steeper the line, the quicker the	
	acceleration.	
	A horizontal line represents no	
	acceleration, meaning a constant velocity .	Time (Seconds)
	The area under the graph is the distance .	

Subject: Maths

Topic: Equation of a Circle and Tangent

Topic/Skill Vi	Definition/Tips	Example
1. Equation of a Circle	The equation of a circle, centre (0,0), radius r, is: $x^2 + y^2 = r^2$	
2. Tangent	 A straight line that touches a circle at exactly one point, never entering the circle's interior. A radius is perpendicular to a tangent at the point of contact. 	$x^2 + y^2 = 25$
3. Gradient	Gradient is another word for slope . $G = \frac{Rise}{Run} = \frac{Change in y}{Change in x} = \frac{y_2 - y_1}{x_2 - x_1}$	(x_{2},y_{2}) $B (-3,4)$ $F (-$
4. Circle Theorem 5	A tangent is perpendicular to the radius at the point of contact.	y = 5cm (Pythagoras' Theorem)

Topic: Vectors

Topic/Skill	Definition/Tips	Example
1. Translation	Translate means to move a shape . The shape does not change size or orientation .	Q 3 3 4 4 4 7 9 Q 2 4 7 9 Q 2 7 4 7 9 Q 7 4 7 9 9 Q 7 4 7 9 9 Q 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
2. Vector Notation	A vector can be written in 3 ways: a or \overrightarrow{AB} or $\begin{pmatrix} 1\\ 3 \end{pmatrix}$	
3. Column Vector	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-)	$\binom{2}{3}$ means '2 right, 3 up' $\binom{-1}{-5}$ means '1 left, 5 down'
4. Vector	A vector is a quantity represented by an arrow with both direction and magnitude. $\overrightarrow{AB} = -\overrightarrow{BA}$	$\overrightarrow{AB} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$
5. Magnitude	Magnitude is defined as the length of a vector.	Magnitude (length) can be calculated using Pythagoras Theorem: 3 ² + 4 ² = 25 /25 = 5
6. Equal Vectors	If two vectors have the same magnitude and direction , they are equal .	
7. Parallel Vectors	Parallel vectors are multiples of each other.	$2\mathbf{a}+\mathbf{b}$ and $4\mathbf{a}+2\mathbf{b}$ are parallel as they are multiple of each other.

8. Collinear Vectors	Collinear vectors are vectors that are on the same line. To show that two vectors are collinear, show that one vector is a multiple of the other (parallel) AND that both vectors share a point.	A C
9. Resultant Vector	The resultant vector is the vector that results from adding two or more vectors together. The resultant can also be shown by lining up the head of one vector with the tail of the other.	if $\underline{\mathbf{a}} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$ and $\underline{\mathbf{b}} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$ then $\underline{\mathbf{a}} + \underline{\mathbf{b}} = \begin{pmatrix} 4 \\ 4 \end{pmatrix} + \begin{pmatrix} 2 \\ -2 \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$
10. Scalar of a Vector	A scalar is the number we multiply a vector by.	Example: 3a + 2b = $= 3\binom{2}{1} + 2\binom{4}{-1}$ $= \binom{6}{3} + \binom{8}{-2}$ $= \binom{14}{1}$
11. Vector Geometry	$\overrightarrow{OA} = a \overrightarrow{AO} = -a$ $\overrightarrow{OB} = b \overrightarrow{BO} = -b$ $\overrightarrow{AB} = AO + OB = -a + b = b - a$ $\overrightarrow{AB} = AO + OA = -b + a = a - b$	Example 1: X is the midpoint of AB . Find \overrightarrow{OX} Answer: Draw X on the original diagram \overrightarrow{O} \overrightarrow{O} \overrightarrow{O} \overrightarrow{O} \overrightarrow{A} Now build up a journey. You could use $\overrightarrow{OX} = \overrightarrow{OA} + \frac{1}{2}\overrightarrow{AB}$. This will give: $\overrightarrow{OX} = a + \frac{1}{2}(b-a)$. This will simplify to $\frac{1}{2}a + \frac{1}{2}b$ or $\frac{1}{2}(a+b)$

Topic: Growth and Decay

Topic/Skill	Definition/Tips	Example
1. Exponential	When we multiply a number repeatedly	1, 2, 4, 8, 16, 32, 64, 128 is an
Growth	by the same number $(\neq 1)$, resulting in the	example of exponential growth,
	number increasing by the same	because the numbers are being
	proportion each time.	multiplied by 2 each time.
	The original amount can grow very quickly	
	in exponential growth.	
2. Exponential	When we multiply a number repeatedly	1000, 200, 40, 8 is an example of
Decay	by the same number $(0 < x < 1)$,	exponential decay, because the
	resulting in the number decreasing by the	numbers are being multiplied by $\frac{1}{2}$ each
	same proportion each time.	time
	The original amount can decrease very	
	quickly in exponential decay.	
3. Compound	Interest paid on the original amount and	A bank pays 5% compound interest a
Interest	the accumulated interest.	year. Bob invests £3000. How much
		will he have after 7 years.
		$3000 \times 1.05^7 = \pounds4221.30$
4. Exponential	The equation is of the form $y = a^x$, where	
Graph	<i>a</i> is a number called the base .	4
		2
	If $a > 1$ the graph increases.	
	If $0 < a < 1$, the graph decreases.	-2 0 2 -2 0 2
	The much has an example to which is the	
	The graph has an asymptote which is the	
	X-4X15.	
	The v-intercent of the graph $y = a^{\chi}$ is	
	The y-intercept of the graph $y = a^{-1}$ is	
	$(\mathbf{U},\mathbf{I})\mathbf{S}$	

Topic: Real Life Graphs

Topic/Skill	Definition/Tips	Example
1. Real Life	Graphs that are supposed to model some	40
Graphs	real-life situation.	38 -
		34 -
	The actual meaning of the values depends	32 - 30 -
	on the labels and units on each axis.	28 - 26 -
	The gradient might have a contentual	$(\widehat{\mathbf{u}})$ (24)
	moning	
	The v-intercent might have a contextual	0 18 - 16 -
	meaning.	14 - 12 -
	The area under the graph might have a	10
	contextual meaning.	6 -
		4 - 2 -
		0 1 2 3 4 5 6 7 8 9 10
		Days (d)
		A graph showing the cost of hiring a
		ladder for various numbers of days.
		The gradient shows the cost per day. It
		costs $\pounds 3/day$ to hire the ladder.
		The y-intercept shows the additional
		cost/deposit/fixed charge (something
		hired for). The additional cost is f7
2 Conversion	A line graph to convert one unit to	Conversion graph miles \leftarrow kilometres
Graph	another.	Im I
F		20
	Can be used to convert units (eg. miles and	16
	kilometres) or currencies (\$ and £)	
		12
	Find the value you know on one axis, read	8
	up/across to the conversion line and read	4
	the equivalent value from the other axis.	
		0 5 10 miles15
		8 km = 5 miles
3. Depth of	Graphs can be used to show how the depth	1 2 3 4 5
Water in	of water changes as different shaped	
Containers	containers are filled with water at a	
	constant rate.	

