Topic/Skill	Definition/Tips	Example
1. Ratio	Ratio compares the size of one part to another part. Written using the ' $:$ ' symbol.	$3: 1$
2. Proportion	Proportion compares the size of one part to the size of the whole. Usually written as a fraction.	In a class with 13 boys and 9 girls, the proportion of boys is $\frac{13}{22}$ and the proportion of girls is $\frac{9}{22}$
3. Simplifying Ratios	Divide all parts of the ratio by a common factor.	$5: 10=1: 2$ (divide both by 5) $14: 21=2: 3$ (divide both by 7)
4. Ratios in the form 1: n or $n: 1$	Divide both parts of the ratio by one of the numbers to make one part equal 1.	$\begin{aligned} & 5: 7=1: \frac{7}{5} \text { in the form } 1: \mathrm{n} \\ & 5: 7=\frac{5}{7}: 1 \text { in the form } \mathrm{n}: 1 \end{aligned}$
5. Sharing in a Ratio	1. Add the total parts of the ratio. 2. Divide the amount to be shared by this value to find the value of one part. 3. Multiply this value by each part of the ratio. Use only if you know the total.	Share $£ 60$ in the ratio $3: 2: 1$. $\begin{aligned} & 3+2+1=6 \\ & 60 \div 6=10 \\ & 3 \times 10=30,2 \times 10=20,1 \times 10=10 \\ & £ 30: £ 20: £ 10 \end{aligned}$
6. Proportional Reasoning	Comparing two things using multiplicative reasoning and applying this to a new situation. Identify one multiplicative link and use this to find missing quantities.	
7. Unitary Method	Finding the value of a single unit and then finding the necessary value by multiplying the single unit value.	3 cakes require 450 g of sugar to make. Find how much sugar is needed to make 5 cakes. $\begin{aligned} & 3 \text { cakes }=450 \mathrm{~g} \\ & \text { So } 1 \text { cake }=150 \mathrm{~g}(\div \text { by } 3) \\ & \text { So } 5 \text { cakes }=750 \mathrm{~g}(\mathrm{x} \text { by } 5) \\ & \hline \end{aligned}$
8. Ratio already shared	Find what one part of the ratio is worth using the unitary method.	Money was shared in the ratio 3:2:5 between Ann, Bob and Cat. Given that Bob had $£ 16$, found out the total amount of money shared. $\begin{aligned} & £ 16=2 \text { parts } \\ & \text { So } £ 8=1 \text { part } \\ & 3+2+5=10 \text { parts, so } 8 \times 10=£ 80 \end{aligned}$
9. Best Buys	Find the unit cost by dividing the price by the quantity. The lowest number is the best value.	8 cakes for $£ 1.28 \rightarrow 16$ p each (\div by 8) 13 cakes for $£ 2.05 \rightarrow 15.8$ p each (\div by 13) Pack of 13 cakes is best value.

Topic/Skill	Definition/Tips	Example
1. Direct Proportion	If two quantities are in direct proportion, as one increases, the other increases by the same percentage. If y is directly proportional to x, this can be written as $\boldsymbol{y} \propto \boldsymbol{x}$ An equation of the form $\boldsymbol{y}=\boldsymbol{k} \boldsymbol{x}$ represents direct proportion, where k is the constant of proportionality.	
2. Inverse Proportion	If two quantities are inversely proportional, as one increases, the other decreases by the same percentage. If y is inversely proportional to x, this can be written as $\boldsymbol{y} \propto \frac{\mathbf{1}}{\boldsymbol{x}}$ An equation of the form $\boldsymbol{y}=\frac{\boldsymbol{k}}{\boldsymbol{x}}$ represents inverse proportion.	
3. Using proportionality formulae	Direct: $\mathbf{y}=\mathbf{k x}$ or $\mathbf{y} \propto \mathbf{x}$ Inverse: $\mathbf{y}=\frac{k}{x}$ or $\mathbf{y} \propto \frac{1}{x}$ 1. Solve to find \mathbf{k} using the pair of values in the question. 2. Rewrite the equation using the k you have just found. 3. Substitute the other given value from the question in to the equation to find the missing value.	p is directly proportional to q . When $\mathrm{p}=12, \mathrm{q}=4$. Find p when $\mathrm{q}=20$. $\begin{aligned} & \text { 1. } \mathrm{p}=\mathrm{kq} \\ & 12=\mathrm{kx} 4 \\ & \text { so } \mathrm{k}=3 \end{aligned}$ 2. $p=3 q$ 3. $p=3 \times 20=60$, so $p=60$
4. Direct Proportion with powers	Graphs showing direct proportion can be written in the form $\boldsymbol{y}=\boldsymbol{k} \boldsymbol{x}^{\boldsymbol{n}}$ Direct proportion graphs will always start at the origin.	Direct Proportion Graphs
5. Inverse Proportion with powers	Graphs showing inverse proportion can be written in the form $\boldsymbol{y}=\frac{\boldsymbol{k}}{x^{n}}$ Inverse proportion graphs will never start at the origin.	$=\sqrt{\|c\|}$

Topic/Skill	Definition/Tips	Example
1. Metric System	A system of measures based on: - the metre for length - the kilogram for mass - the second for time Length: mm, cm, m, km Mass: mg, g, kg Volume: ml, cl, l	```1kilometres = 1000 metres 1 \text { metre = 100 centimetres} 1 centimetre = 10 millimetres 1 kilogram = 1000 grams```
2. Imperial System	A system of weights and measures originally developed in England, usually based on human quantities Length: inch, foot, yard, miles Mass: Ib, ounce, stone Volume: pint, gallon	$\begin{aligned} & 1 \mathrm{lb}=16 \text { ounces } \\ & 1 \text { foot }=12 \text { inches } \\ & 1 \text { gallon }=8 \text { pints } \end{aligned}$
3. Metric and Imperial Units	Use the unitary method to convert between metric and imperial units.	5 miles ≈ 8 kilometres 1 gallon ≈ 4.5 litres 2.2 pounds ≈ 1 kilogram 1 inch $=2.5$ centimetres
4. Speed, Distance, Time	Speed = Distance \div Time Distance $=$ Speed x Time Time $=$ Distance \div Speed Remember the correct units.	Speed $=4 \mathrm{mph}$ Time $=2$ hours Find the Distance. $D=S \times T=4 \times 2=8 \text { miles }$
5. Density, Mass, Volume	Density $=$ Mass \div Volume Mass = Density x Volume Volume $=$ Mass \div Density Remember the correct units.	$\begin{aligned} & \text { Density }=8 \mathrm{~kg} / \mathrm{m}^{3} \\ & \text { Mass }=2000 \mathrm{~g} \end{aligned}$ Find the Volume. $V=M \div D=2 \div 8=0.25 \mathrm{~m}^{3}$
6. Pressure, Force, Area	$\begin{aligned} & \text { Pressure }=\text { Force } \div \text { Area } \\ & \text { Force }=\text { Pressure } \times \text { Area } \\ & \text { Area }=\text { Force } \div \text { Pressure } \end{aligned}$	$\begin{aligned} & \text { Pressure }=10 \text { Pascals } \\ & \text { Area }=6 \mathrm{~cm}^{2} \end{aligned}$ Find the Force

		$F=P \times A=10 \times 6=60 \mathrm{~N}$

Topic/Skill	Definition/Tips	Example
1. Types of Angles	Acute angles are less than 90°. Right angles are exactly 90°. Obtuse angles are greater than 90° but less than 180°. Reflex angles are greater than 180° but less than 360°.	
2. Angle Notation	Can use one lower-case letters, eg. θ or x Can use three upper-case letters, eg. $B A C$	
3. Angles at a Point	Angles around a point add up to $360{ }^{\circ}$.	
4. Angles on a Straight Line	Angles around a point on a straight line add up to 180°.	
5. Opposite Angles	Vertically opposite angles are equal.	$\frac{x / y}{y / x}$
6. Alternate Angles	Alternate angles are equal. They look like Z angles, but never say this in the exam.	
7. Corresponding Angles	Corresponding angles are equal. They look like F angles, but never say this in the exam.	
8. Co-Interior Angles	Co-Interior angles add up to 180°. They look like C angles, but never say this in the exam.	

9. Angles in a Triangle	Angles in a triangle add up to 180°.	
10. Types of Triangles	Right Angle Triangles have a $\mathbf{9 0}^{\circ}$ angle in. Isosceles Triangles have 2 equal sides and 2 equal base angles. Equilateral Triangles have $\mathbf{3}$ equal sides and 3 equal angles (60°). Scalene Triangles have different sides and different angles. Base angles in an isosceles triangle are equal.	
11. Angles in a Quadrilateral	Angles in a quadrilateral add up to 360°.	
12. Polygon	A 2D shape with only straight edges.	Rectangle, Hexagon, Decagon, Kite etc.
13. Regular	A shape is regular if all the sides and all the angles are equal.	
14. Names of Polygons	```3-sided = Triangle 4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon 7-sided \(=\) Heptagon/Septagon 8-sided = Octagon 9-sided = Nonagon 10-sided \(=\) Decagon```	
15. Sum of Interior Angles	$(n-2) \times 180$ where n is the number of sides.	Sum of Interior Angles in a Decagon $=$ $(10-2) \times 180=1440^{\circ}$
16. Size of Interior Angle in a Regular Polygon	$\frac{(n-2) \times 180}{n}$ You can also use the formula:	Size of Interior Angle in a Regular Pentagon $=$ $\frac{(5-2) \times 180}{5}=108^{\circ}$

	$\mathbf{1 8 0}$ - Size of Exterior Angle	
17. Size of Exterior Angle in a Regular Polygon	$\frac{\mathbf{3 6 0}}{\boldsymbol{n}}$	Size of Exterior Angle in a Regular Octagon $=$
You can also use the formula: $\mathbf{1 8 0}$ - Size of Interior Angle	$\frac{360}{8}=45^{\circ}$	

Topic/Skill	Definition/Tips	Example
1. Scale	The ratio of the length in a model to the length of the real thing.	
2. Scale (Map)	The ratio of a distance on the map to the actual distance in real life.	$1 \mathrm{in} .=250 \mathrm{mi}$ $1 \mathrm{~cm}=160 \mathrm{~km}$ \qquad 400 Kioneters
3. Bearings	1. Measure from North (draw a North line) 2. Measure clockwise 3. Your answer must have $\mathbf{3}$ digits (eg. 047°) Look out for where the bearing is measured from.	
4. Compass Directions	You can use an acronym such as 'Never Eat Shredded Wheat' to remember the order of the compass directions in a clockwise direction. Bearings: $N E=045^{\circ}, W=270^{\circ}$ etc.	

| Topic/Skill | Definition/Tips | Example |
| :--- | :--- | :--- | :--- |
| 1. Square | • Four equal sides
 - Four right angles
 • Opposite sides parallel
 - Diagonals bisect each other at right
 angles | |
| | - Four lines of symmetry | |
| - Rotational symmetry of order four | | |

Topic/Skill	Definition/Tips	Example
1. Pythagoras' Theorem	For any right angled triangle: $a^{2}+b^{2}=c^{2}$ Used to find missing lengths. a and b are the shorter sides, c is the hypotenuse (longest side).	$8=y, b=8, c=10$FUnTRACT: $a^{2}=c^{2}-b^{2}$ $y^{2}=100-64$ $y^{2}=36$ $y=6$$y$
2. 3D Pythagoras' Theorem	Find missing lengths by identifying right angled triangles. You will often have to find a missing length you are not asked for before finding the missing length you are asked for.	Can a pencil that is 20 cm long fit in a pencil tin with dimensions $12 \mathrm{~cm}, 13 \mathrm{~cm}$ and 9 cm ? The pencil tin is in the shape of a cuboid. Hypotenuse of the base $=$ $\sqrt{12^{2}+13^{2}}=17.7$ Diagonal of cuboid $=\sqrt{17.7^{2}+9^{2}}=$ 19.8 cm No, the pencil cannot fit.

Topic/Skill	Definition/Tips	Example
1. Congruent Shapes	Shapes are congruent if they are identical same shape and same size. Shapes can be rotated or reflected but still be congruent.	
2. Congruent Triangles	4 ways of proving that two triangles are congruent: 1. SSS (Side, Side, Side) 2. RHS (Right angle, Hypotenuse, Side) 3. SAS (Side, Angle, Side) 4. ASA (Angle, Side, Angle) or AAS ASS does not prove congruency.	$\begin{aligned} & B C=D F \\ & \angle A B C=\angle E D F \\ & \angle A C B=\angle E F D \end{aligned}$ \therefore The two triangles are congruent by AAS.
3. Similar Shapes	Shapes are similar if they are the same shape but different sizes. The proportion of the matching sides must be the same, meaning the ratios of corresponding sides are all equal.	
4. Scale Factor	The ratio of corresponding sides of two similar shapes. To find a scale factor, divide a length on one shape by the corresponding length on a similar shape.	Scale Factor $=15 \div 10=1.5$
5. Finding missing lengths in similar shapes	1. Find the scale factor. 2. Multiply or divide the corresponding side to find a missing length. If you are finding a missing length on the larger shape you will need to multiply by the scale factor. If you are finding a missing length on the smaller shape you will need to divide by the scale factor.	$\begin{aligned} & \text { Scale Factor }=3 \div 2=1.5 \\ & x=4.5 \times 1.5=6.75 \mathrm{~cm} \end{aligned}$
6. Similar Triangles	To show that two triangles are similar, show that: 1. The three sides are in the same proportion 2. Two sides are in the same proportion, and their included angle is the same 3. The three angles are equal	

Topic: Loci and Constructions

| Topic/Skill | Definition/Tips |
| :--- | :--- | :--- |
| Parallel lines never meet. | |
| 2.
 Perpendicular | Perpendicular lines are at right angles.
 There is a 90° angle between them. |
| 3. Vertex | A corner or a point where two lines meet. |
| 4. Angle | Angle Bisector: Cuts the angle in half.
 Bisector
 1. Place the sharp end of a pair of
 2. Drases an arc, marking a point on each
 line.
 3. Without changing the compass put the
 compass on each point and mark a centre
 point where two arcs cross over.
 4. Use a ruler to draw a line through the
 vertex and centre point. |
| 5.
 Perpendicular
 Bisector | Perpendicular Bisector: Cuts a line in
 half and at right angles.
 1. Put the sharp point of a pair of
 compasses on A.
 2. Open the compass over half way on the
 line.
 3. Draw an arc above and below the line.
 4. Without changing the compass, repeat
 from point B.
 5. Draw a straight line through the two
 intersecting arcs. |
| The perpendicular distance from a point
 to a line is the shortest distance to that
 line.
 Perpendicular
 from an
 External Point
 compasses on the point.
 2. Draw an arc that crosses the line twice.
 3. Place the sharp point of the compass on
 one of these points, open over half way and
 draw an arc above and below the line.
 4. Repeat from the other point on the line. | |

	5. Draw a straight line through the two intersecting arcs.
7. Perpendicular from a Point on a Line	1. Put the sharp point of a pair of compasses on point R. 2. Draw two arcs either side of the point of equal width (giving points S and T) 3. Place the compass on point S, open over halfway and draw an arc above the line. 4. Repeat from the other arc on the line (point T).
5. Draw a straight line from the	
intersecting arcs to the original point on the	
line.	

| 11. |
| :--- | :--- |
| Constructing |
| an Equilateral |
| Triangle (also |
| makes a 60° |
| angle) | | 1. Draw the base of the triangle using a |
| :--- |
| ruler. |
| 2. Open the pair of compasses to the exact |
| length of the side of the triangle. |
| 3. Place the sharp point on one end of the |
| line and draw an arc. |
| 4. Repeat this from the other end of the |
| line. |
| 5. Using a ruler, draw lines connecting the |
| ends of the base of the triangle to the point |
| where the arcs intersect. |

Topic/Skill	Definition/Tips	Example
1. Coordinates	Written in pairs. The first term is the \mathbf{x} coordinate (movement across). The second term is the y-coordinate (movement up or down)	 A: $(4,7)$ B: $(-6,-3)$
2. Midpoint of a Line	Method 1: add the \mathbf{x} coordinates and divide by 2 , add the y coordinates and divide by 2 Method 2: Sketch the line and find the values half way between the two x and two y values.	Find the midpoint between $(2,1)$ and $(6,9)$ $\frac{2+6}{2}=4 \text { and } \frac{1+9}{2}=5$ So, the midpoint is $(4,5)$
3. Linear Graph	Straight line graph. The general equation of a linear graph is $y=m x+c$ where \boldsymbol{m} is the gradient and c is the \mathbf{y} intercept. The equation of a linear graph can contain an \mathbf{x}-term, a y-term and a number.	Example: Other examples: $\begin{aligned} & x=y \\ & y=4 \\ & x=-2 \\ & y=2 x-7 \\ & y+x=10 \\ & 2 y-4 x=12 \end{aligned}$
4. Plotting Linear Graphs	Method 1: Table of Values Construct a table of values to calculate coordinates. Method 2: Gradient-Intercept Method (use when the equation is in the form $y=$ $m x+c$) 1. Plots the y-intercept 2. Using the gradient, plot a second point. 3. Draw a line through the two points plotted. Method 3: Cover-Up Method (use when the equation is in the form $a x+b y=c$) 1. Cover the x term and solve the resulting equation. Plot this on the x-axis. 2. Cover the y term and solve the resulting equation. Plot this on the y-axis. 3. Draw a line through the two points plotted.	\mathbf{x} -3 -2 -1 0 1 2 3 $\mathbf{y}=\mathbf{x}+\mathbf{3}$ 0 1 2 3 4 5 6$2 x+4 y=8$

5. Gradient	The gradient of a line is how steep it is. Gradient = $\frac{\text { Change in } y}{\text { Change in } x}=\frac{\text { Rise }}{\text { Run }}$ The gradient can be positive (sloping upwards) or negative (sloping downwards)	
6 . Finding the Equation of a Line given a point and a gradient	Substitute in the gradient (m) and point (\mathbf{x}, \mathbf{y}) in to the equation $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{c}$ and solve for c.	Find the equation of the line with gradient 4 passing through (2,7). $\begin{gathered} y=m x+c \\ 7=4 \times 2+c \\ c=-1 \\ y=4 x-1 \end{gathered}$
7. Finding the Equation of a Line given two points	Use the two points to calculate the gradient. Then repeat the method above using the gradient and either of the points.	Find the equation of the line passing through $(6,11)$ and $(2,3)$ $\begin{gathered} m=\frac{11-3}{6-2}=2 \\ y=m x+c \\ 11=2 \times 6+c \\ c=-1 \\ y=2 x-1 \end{gathered}$
8. Parallel Lines	If two lines are parallel, they will have the same gradient. The value of m will be the same for both lines.	Are the lines $y=3 x-1$ and $2 y-$ $6 x+10=0$ parallel? Answer: Rearrange the second equation in to the form $y=m x+c$ $2 y-6 x+10=0 \rightarrow y=3 x-5$ Since the two gradients are equal (3), the lines are parallel.
9. Perpendicular Lines	If two lines are perpendicular, the product of their gradients will always equal -1. The gradient of one line will be the negative reciprocal of the gradient of the other line. You may need to rearrange equations of lines to compare gradients (they need to be in the form $y=m x+c$)	Find the equation of the line perpendicular to $y=3 x+2$ which passes through $(6,5)$ Answer: As they are perpendicular, the gradient of the new line will be $-\frac{1}{3}$ as this is the negative reciprocal of 3 . $y=m x+c$

		$5=-\frac{1}{3} \times 6+c$ $c=7$
	Or	$y=-\frac{1}{3} x+7$
$3 x+x-7=0$		

Topic/Skill	Definition/Tips	Example
1. Circle	A circle is the locus of all points equidistant from a central point.	
2. Parts of a Circle	Radius - the distance from the centre of a circle to the edge Diameter - the total distance across the width of a circle through the centre. Circumference - the total distance around the outside of a circle Chord - a straight line whose end points lie on a circle Tangent - a straight line which touches a circle at exactly one point Arc - a part of the circumference of a circle Sector - the region of a circle enclosed by two radii and their intercepted arc Segment - the region bounded by a chord and the arc created by the chord	
3. Area of a Circle	$\boldsymbol{A}=\boldsymbol{\pi} \boldsymbol{r}^{2}$ which means 'pi x radius squared'.	If the radius was 5 cm , then: $A=\pi \times 5^{2}=78.5 \mathrm{~cm}^{2}$
4. Circumference of a Circle	$\boldsymbol{C}=\boldsymbol{\pi} \boldsymbol{d}$ which means 'pix diameter'	If the radius was 5 cm , then: $C=\pi \times 10=31.4 \mathrm{~cm}$
5. π ('pi')	Pi is the circumference of a circle divided by the diameter. $\pi \approx 3.14$	
6. Arc Length of a Sector	The arc length is part of the circumference. Take the angle given as a fraction over 360° and multiply by the circumference.	$\text { Arc Length }=\frac{115}{360} \times \pi \times 8=8.03 \mathrm{~cm}$
7. Area of a Sector	The area of a sector is part of the total area. Take the angle given as a fraction over $\mathbf{3 6 0}{ }^{\circ}$ and multiply by the area.	$\text { Area }=\frac{115}{360} \times \pi \times 4^{2}=16.1 \mathrm{~cm}^{2}$

8. Surface Area of a Cylinder	Curved Surface Area $=\pi d h$ or $\mathbf{2 \pi r h}$ Total SA $=2 \pi r^{2}+\pi d h$ or $2 \pi r^{2}+2 \pi r h$	
9. Surface Area of a Cone	Curved Surface Area $=\boldsymbol{\pi r l}$ where $l=$ slant height Total SA $=\pi r l+\pi r^{2}$ You may need to use Pythagoras' Theorem to find the slant height	
10. Surface Area of a Sphere	$S A=4 \pi r^{2}$ Look out for hemispheres - halve the SA of a sphere and add on a circle $\left(\pi r^{2}\right)$	Find the surface area of a sphere with radius 3 cm . $S A=4 \pi(3)^{2}=36 \pi \mathrm{~cm}^{2}$

Topic/Skill	Definition/Tips	Example
1. Translation	Translate means to move a shape. The shape does not change size or orientation.	
2. Column Vector	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-)	$\binom{2}{3}$ means '2 right, 3 up' $\binom{-1}{-5}$ means ' 1 left, 5 down'
3. Rotation	The size does not change, but the shape is turned around a point. Use tracing paper.	Rotate Shape A 90° anti-clockwise about $(0,1)$
4. Reflection	The size does not change, but the shape is 'flipped' like in a mirror. Line $\boldsymbol{x}=$? is a vertical line. Line $y=$? is a horizontal line. Line $\boldsymbol{y}=\boldsymbol{x}$ is a diagonal line.	Reflect shape C in the line $y=x$
5. Enlargement	The shape will get bigger or smaller. Multiply each side by the scale factor.	```Scale Factor = 3 means ' }3\mathrm{ times larger = multiply by 3' Scale Factor = 1/2 means 'half the size = divide by 2'```

6 . Finding the Centre of Enlargement	Draw straight lines through corresponding corners of the two shapes. The centre of enlargement is the point where all the lines cross over. Be careful with negative enlargements as the corresponding corners will be the other way around.	
7. Describing Transformatio ns	Give the following information when describing each transformation: Look at the number of marks in the question for a hint of how many pieces of information are needed. If you are asked to describe a 'transformation', you need to say the name of the type of transformation as well as the other details.	- Translation, Vector - Rotation, Direction, Angle, Centre - Reflection, Equation of mirror line - Enlargement, Scale factor, Centre of enlargement
8. Negative Scale Factor Enlargements	Negative enlargements will look like they have been rotated. $S F=-2$ will be rotated, and also twice as big.	Enlarge ABC by scale factor -2 , centre $(1,1)$
9. Invariance	A point, line or shape is invariant if it does not change/move when a transformation is performed. An invariant point 'does not vary'.	If shape P is reflected in the y-axis, then exactly one vertex is invariant.

Topic/Skill	Definition/Tips	Example
1. Trigonometry	The study of triangles.	
2. Hypotenuse	The longest side of a right-angled triangle. Is always opposite the right angle.	
3. Adjacent	Next to	
4. Trigonometric Formulae	Use SOHCAHTOA. $\begin{aligned} & \sin \theta=\frac{O}{H} \\ & \cos \theta=\frac{A}{H} \\ & \tan \theta=\frac{O}{A} \end{aligned}$ When finding a missing angle, use the 'inverse' trigonometric function by pressing the 'shift' button on the calculator.	Use 'Opposite' and 'Adjacent', so use 'tan' $\begin{gathered} \tan 35=\frac{x}{11} \\ x=11 \tan 35=7.70 \mathrm{~cm} \end{gathered}$ $\begin{gathered} \cos x=\frac{5}{7} \\ x=\cos ^{-1}\left(\frac{5}{7}\right)=44.4^{\circ} \end{gathered}$ Use 'Adjacent' and 'Hypotenuse', so use 'cos'
$\begin{aligned} & \hline \text { 5.3D } \\ & \text { Trigonometry } \end{aligned}$	Find missing lengths by identifying right angled triangles. You will often have to find a missing length you are not asked for before finding the missing length you are asked for.	

Topic/Skill	Definition/Tips	Example
1. Net	A pattern that you can cut and fold to make a model of a 3D shape.	
2. Properties of Solids	$\begin{aligned} & \text { Faces = flat surfaces } \\ & \text { Edges = sides/lengths } \\ & \text { Vertices = corners } \end{aligned}$	A cube has 6 faces, 12 edges and 8 vertices.
3. Plans and Elevations	This takes 3D drawings and produces 2D drawings. Plan View: from above Side Elevation: from the side Front Elevation: from the front	
4. Isometric Drawing	A method for visually representing 3D objects in 2D.	

| Topic/Skill | Definition/Tips
 Volume is a measure of the amount of
 space inside a solid shape.
 Units: $\mathrm{mm}^{3}, \mathrm{~cm}^{3}, \mathrm{~m}^{3}$ etc. |
| :--- | :--- | :--- |
| 2. Volume of a
 Cube/Cuboid | $\boldsymbol{V}=\boldsymbol{L e n g t h} \times \boldsymbol{W i d t h} \times \boldsymbol{H e i g h t}$
 $\boldsymbol{V}=\boldsymbol{L} \times \boldsymbol{W} \times \boldsymbol{H}$ |
| You can also use the Volume of a Prism | |
| formula for a cube/cuboid. | |

8. Volume of a Pyramid	$\text { Volume }=\frac{1}{3} B h$ where $\mathrm{B}=$ area of the base	$V=\frac{1}{3} \times 6 \times 6 \times 7=84 \mathrm{~cm}^{3}$
9. Volume of a Sphere	$V=\frac{4}{3} \pi r^{3}$ Look out for hemispheres - just halve the volume of a sphere.	Find the volume of a sphere with diameter 10 cm . $V=\frac{4}{3} \pi(5)^{3}=\frac{500 \pi}{3} \mathrm{~cm}^{3}$
10. Frustums	A frustum is a solid (usually a cone or pyramid) with the top removed. Find the volume of the whole shape, then take away the volume of the small cone/pyramid removed at the top.	$\begin{gathered} V=\frac{1}{3} \pi(10)^{2}(24)-\frac{1}{3} \pi(5)^{2}(12) \\ =700 \pi c m^{3} \end{gathered}$

Topic/Skill	Definition/Tips	Example
Circle Theorem 1 at the circumference.		
Circle		
Theorem 2		

| Circle |
| :--- | :--- |
| Theorem 6 | | Tangents from an external point at equal |
| :--- |
| in length. |
| Circle |
| Theorem 7 |

5. Area of a Triangle	Use when given the length of two sides and the included angle. Area of a Triangle $=\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{a b} \sin \boldsymbol{C}$
$A=\frac{1}{2} a b \sin C$	
$A=\frac{1}{2} \times 7 \times 10 \times \sin 25$	

Topic/Skill	Definition/Tips	Example
1. Coordinates	Written in pairs. The first term is the \mathbf{x} coordinate (movement across). The second term is the y-coordinate (movement up or down)	 A: $(4,7)$ B: $(-6,-3)$
2. Linear Graph	Straight line graph. The equation of a linear graph can contain an \mathbf{x}-term, a \mathbf{y}-term and a number.	Example: Other examples: $\begin{aligned} & x=y \\ & y=4 \\ & x=-2 \\ & y=2 x-7 \\ & y+x=10 \\ & 2 y-4 x=12 \end{aligned}$
3. Quadratic Graph	A 'U-shaped' curve called a parabola. The equation is of the form $y=\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$, where a, b and c are numbers, $\boldsymbol{a} \neq \mathbf{0}$. If $\boldsymbol{a}<\mathbf{0}$, the parabola is upside down.	
4. Cubic Graph	The equation is of the form $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{3}+\boldsymbol{k}$, where \boldsymbol{k} is an number. If $\boldsymbol{a}>\mathbf{0}$, the curve is increasing. If $\boldsymbol{a}<\mathbf{0}$, the curve is decreasing.	
5. Reciprocal Graph	The equation is of the form $\boldsymbol{y}=\frac{\boldsymbol{A}}{\boldsymbol{x}}$, where \boldsymbol{A} is a number and $\boldsymbol{x} \neq \mathbf{0}$. The graph has asymptotes on the \mathbf{x}-axis and y-axis.	
6. Asymptote	A straight line that a graph approaches but never touches.	

7. Exponential Graph	The equation is of the form $\boldsymbol{y}=\boldsymbol{a}^{\boldsymbol{x}}$, where a is a number called the base. If $\boldsymbol{a}>\mathbf{1}$ the graph increases. If $\mathbf{0}<\boldsymbol{a}<\mathbf{1}$, the graph decreases. The graph has an asymptote which is the x-axis.	
8. $y=\sin x$	```Key Coordinates: \((0,0),(90,1),(180,0),(270,-1),(360,0\) \(y\) is never more than 1 or less than -1 . Pattern repeats every \(360^{\circ}\).```	
9. $y=\cos x$	Key Coordinates: $(0,1),(90,0),(180,-1),(270,0),(360,1$ y is never more than 1 or less than -1 . Pattern repeats every 360°.	
10. $y=\tan x$	$\begin{aligned} & \text { Key Coordinates: } \\ & \quad(\mathbf{0}, \mathbf{0}),(\mathbf{4 5}, \mathbf{1}),(\mathbf{1 3 5},-\mathbf{1}),(\mathbf{1 8 0}, \mathbf{0}) \text {, } \\ & \quad(\mathbf{2 2 5}, \mathbf{1}),(\mathbf{3 1 5}, \mathbf{- 1}),(\mathbf{3 6 0} \mathbf{0}) \\ & \text { Asymptotes at } \boldsymbol{x}=\mathbf{9 0} \text { and } \boldsymbol{x}=\mathbf{2 7 0} \\ & \text { Pattern repeats every } 360^{\circ} \text {. } \end{aligned}$	
11. $f(x)+a$	Vertical translation up a units. $\binom{0}{a}$	
12. $f(x+a)$	Horizontal translation left a units. $\binom{-a}{0}$	
13. $-f(x)$	Reflection over the \mathbf{x}-axis.	
14. $f(-x)$	Reflection over the \mathbf{y}-axis.	

Topic/Skill	Definition/Tips	Example
1. Area Under a Curve	To find the area under a curve, split it up into simpler shapes - such as rectangles, triangles and trapeziums - that approximate the area.	
2. Tangent to a Curve	A straight line that touches a curve at exactly one point.	
3. Gradient of a Curve	The gradient of a curve at a point is the same as the gradient of the tangent at that point. 1. Draw a tangent carefully at the point. 2. Make a right-angled triangle. 3. Use the measurements on the axes to calculate the rise and run (change in y and change in x) 4. Calculate the gradient.	$\begin{aligned} \text { Gradient } & =\frac{\text { Change in } y}{\text { Change in } x} \\ = & \frac{16}{2}=8 \end{aligned}$

Topic/Skill Vi	Definition/Tips	Example
1. Equation of a Circle	The equation of a circle, centre ($\mathbf{0}, \mathbf{0}$), radius \mathbf{r}, is: $x^{2}+y^{2}=r^{2}$	$x^{2}+y^{2}=25$
2. Tangent	A straight line that touches a circle at exactly one point, never entering the circle's interior. A radius is perpendicular to a tangent at the point of contact.	
3. Gradient	Gradient is another word for slope. $G=\frac{\text { Rise }}{\text { Run }}=\frac{\text { Change in } y}{\text { Change in } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$	 We need to find the GRADIENT between A at $(3,-2)$ and B at $(-3,4)$ $\begin{aligned} & m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\ & m=\frac{4-2}{3-3} \\ & m=6 / 6=1 \end{aligned}$
4. Circle Theorem 5	A tangent is perpendicular to the radius at the point of contact.	

Topic/Skill	Definition/Tips	Example
1. Translation	Translate means to move a shape. The shape does not change size or orientation.	
2. Vector Notation	A vector can be written in 3 ways: $\mathbf{a} \text { or } \quad \overrightarrow{A B} \quad \text { or } \quad\binom{\mathbf{1}}{\mathbf{3}}$	
3. Column Vector	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-)	$\binom{2}{3}$ means '2 right, 3 up' $\binom{-1}{-5}$ means ' 1 left, 5 down'
4. Vector	A vector is a quantity represented by an arrow with both direction and magnitude. $\overrightarrow{A B}=-\overrightarrow{B A}$	$\overrightarrow{A B}=\binom{3}{2}$
5. Magnitude	Magnitude is defined as the length of a vector.	
6. Equal Vectors	If two vectors have the same magnitude and direction, they are equal.	
7. Parallel Vectors	Parallel vectors are multiples of each other.	$2 \mathbf{a}+\mathbf{b}$ and $4 \mathbf{a}+2 \mathbf{b}$ are parallel as they are multiple of each other.

8. Collinear Vectors	Collinear vectors are vectors that are on the same line. To show that two vectors are collinear, show that one vector is a multiple of the other (parallel) AND that both vectors share a point.	
9. Resultant Vector	The resultant vector is the vector that results from adding two or more vectors together. The resultant can also be shown by lining up the head of one vector with the tail of the other.	if $\underline{a}=\binom{4}{4}$ and $\underline{b}=\binom{2}{-2}$ then $\underline{a}+\underline{b}=\binom{4}{4}+\binom{2}{-2}=\binom{6}{2}$
10. Scalar of a Vector	A scalar is the number we multiply a vector by.	Example: $\begin{aligned} & 3 a+2 b= \\ & =3\binom{2}{1}+2\binom{4}{-1} \\ & =\binom{6}{3}+\binom{8}{-2} \\ & =\binom{14}{1} \end{aligned}$
11. Vector Geometry	$\begin{array}{\|l\|} \hline \overrightarrow{O A}=a \\ \overrightarrow{A O}=-a \\ \hline \overrightarrow{O B}=b \\ \overrightarrow{B O}=-b \\ \hline \overrightarrow{A B}=\overrightarrow{A O}+\overrightarrow{O B}=-a+b=b-a \\ \overrightarrow{B A}=\overrightarrow{B O}+\overrightarrow{O A}=-b+a=a-b \\ \hline \end{array}$	Example 1: X is the midpoint of $A B$. Find $\overrightarrow{O X}$ Answer: Draw X on the original diagram Now build up a journey. You could use $\overrightarrow{O X}=\overrightarrow{O A}+\frac{1}{2} \overrightarrow{A B}$. This will give: $\overrightarrow{O X}=a+\frac{1}{2}(b-a)$. This will simplify to $\frac{1}{2} a+\frac{1}{2} b$ or $\frac{1}{2}(a+b)$

Topic/Skill	Definition/Tips	Example
1. Exponential Growth	When we multiply a number repeatedly by the same number $(\neq 1)$, resulting in the number increasing by the same proportion each time. The original amount can grow very quickly in exponential growth.	$1,2,4,8,16,32,64,128 \ldots$ is an example of exponential growth, because the numbers are being multiplied by 2 each time.
2. Exponential Decay	When we multiply a number repeatedly by the same number $(0<x<1)$, resulting in the number decreasing by the same proportion each time. The original amount can decrease very quickly in exponential decay.	$1000,200,40,8 \ldots$ is an example of exponential decay, because the numbers are being multiplied by $\frac{1}{5}$ each time.
3. Compound Interest	Interest paid on the original amount and the accumulated interest.	A bank pays 5\% compound interest a year. Bob invests $£ 3000$. How much will he have after 7 years. $3000 \times 1.05^{7}=£ 4221.30$
4. Exponential Graph	The equation is of the form $\boldsymbol{y}=\boldsymbol{a}^{\boldsymbol{x}}$, where \boldsymbol{a} is a number called the base. If $a>1$ the graph increases. If $\mathbf{0}<\boldsymbol{a}<\mathbf{1}$, the graph decreases. The graph has an asymptote which is the x -axis. The \mathbf{y}-intercept of the graph $y=a^{x}$ is $(0,1) s$	

Topic/Skill	Definition/Tips	Example
1. Real Life Graphs	Graphs that are supposed to model some real-life situation. The actual meaning of the values depends on the labels and units on each axis. The gradient might have a contextual meaning. The \mathbf{y}-intercept might have a contextual meaning. The area under the graph might have a contextual meaning.	 A graph showing the cost of hiring a ladder for various numbers of days. The gradient shows the cost per day. It costs $£ 3 /$ day to hire the ladder. The y-intercept shows the additional cost/deposit/fixed charge (something not linked to how long the ladder is hired for). The additional cost is $£ 7$.
2. Conversion Graph	A line graph to convert one unit to another. Can be used to convert units (eg. miles and kilometres) or currencies (\$ and £) Find the value you know on one axis, read up/across to the conversion line and read the equivalent value from the other axis.	Conversion graph miles \longleftrightarrow kilometres $8 \mathrm{~km}=5 \mathrm{miles}$
3. Depth of Water in Containers	Graphs can be used to show how the depth of water changes as different shaped containers are filled with water at a constant rate.	

