Topic: Algebra

Topic/Skill	Definition/Tips	Example
1. Expression	A mathematical statement written using symbols, numbers or letters,	$3x + 2 \text{ or } 5y^2$
2. Equation	A statement showing that two expressions are equal	2y - 17 = 15
3. Identity	An equation that is true for all values of the variables An identity uses the symbol: ≡	$2x \equiv x + x$
4. Formula	Shows the relationship between two or more variables	Area of a rectangle = length x width or A= LxW
5. Simplifying Expressions	Collect 'like terms'. Be careful with negatives. x^2 and x are not like terms.	$2x + 3y + 4x - 5y + 3$ $= 6x - 2y + 3$ $3x + 4 - x^{2} + 2x - 1 = 5x - x^{2} + 3$
6. <i>x</i> times <i>x</i>	The answer is x^2 not $2x$.	Squaring is multiplying by itself, not by 2.
7. $p \times p \times p$	The answer is p^3 not $3p$	If p=2, then p^3 =2x2x2=8, not 2x3=6
8. p + p + p	The answer is 3p not p^3	If p=2, then $2+2+2=6$, not $2^3 = 8$
9. Expand	To expand a bracket, multiply each term in the bracket by the expression outside the bracket.	3(m+7) = 3x + 21
10. Factorise	The reverse of expanding. Factorising is writing an expression as a product of terms by 'taking out' a common factor.	6x - 15 = 3(2x - 5), where 3 is the common factor.

Topic: Equations and Formulae

Topic/Skill	Definition/Tips	Example
1. Solve	To find the answer /value of something	Solve $2x - 3 = 7$
	Use inverse operations on both sides of the equation (balancing method) until you find the value for the letter.	Add 3 on both sides $2x = 10$ Divide by 2 on both sides $x = 5$
2. Inverse	Opposite	The inverse of addition is subtraction. The inverse of multiplication is division.
3. Rearranging Formulae	Use inverse operations on both sides of the formula (balancing method) until you find the expression for the letter.	Make x the subject of $y = \frac{2x-1}{z}$ Multiply both sides by z $yz = 2x - 1$ Add 1 to both sides $yz + 1 = 2x$ Divide by 2 on both sides $\frac{yz + 1}{2} = x$ We now have x as the subject.
4. Writing Formulae	Substitute letters for words in the question.	Bob charges £3 per window and a £5 call out charge. $C = 3N + 5$ Where N=number of windows and C=cost
5. Substitution	Replace letters with numbers.	a = 3, b = 2 and $c = 5$. Find: 1. $2a = 2 \times 3 = 6$
	Be careful of $5x^2$. You need to square first, then multiply by 5.	1. $2a = 2 \times 3 = 6$ 2. $3a - 2b = 3 \times 3 - 2 \times 2 = 5$ 3. $7b^2 - 5 = 7 \times 2^2 - 5 = 23$

Topic: Solving Quadratics by Factorising

Topic/Skill	Definition/Tips	Example
1. Quadratic	A quadratic expression is of the form	Examples of quadratic expressions:
	$ax^2 + bx + c$	$8x^2 - 3x + 7$
	where a , b and c are numbers, $a \neq 0$	Examples of non-quadratic expressions: $2x^3 - 5x^2$ 9x - 1
2. Factorising	When a quadratic expression is in the form	$9x - 1$ $x^2 + 7x + 10 = (x + 5)(x + 2)$
Quadratics	$x^2 + bx + c$ find the two numbers that add	(because 5 and 2 add to give 7 and
	to give b and multiply to give c.	multiply to give 10)
		$x^{2} + 2x - 8 = (x + 4)(x - 2)$ (because +4 and -2 add to give +2 and multiply to give -8)
3. Difference	An expression of the form $a^2 - b^2$ can be	$x^2 - 25 = (x+5)(x-5)$
of Two Squares	factorised to give $(a + b)(a - b)$	$16x^2 - 81 = (4x + 9)(4x - 9)$
4. Solving	Isolate the x^2 term and square root both	$2x^2 = 98$
Quadratics $(ax^2 = b)$	sides. Remember there will be a positive and a	$x^2 = 49$ $x = \pm 7$
(ax - b)	negative solution.	$x - \pm i$
5. Solving	Factorise and then solve $= 0$.	$x^2 - 3x = 0$
Quadratics		x(x-3)=0
$(ax^2 + bx = 0)$		x = 0 or x = 3
6. Solving Quadratics by	Factorise the quadratic in the usual way. Solve = 0	Solve $x^2 + 3x - 10 = 0$
Factorising		Factorise: $(x + 5)(x - 2) = 0$
(a=1)	Make sure the equation = 0 before factorising.	x = -5 or x = 2
7. Factorising Quadratics	When a quadratic is in the form $ax^2 + bx + c$	Factorise $6x^2 + 5x - 4$
when $a \neq 1$	1. Multiply a by $c = ac$	$1.6 \times -4 = -24$
	2. Find two numbers that add to give b and	2. Two numbers that add to give +5 and
	multiply to give ac.	multiply to give -24 are +8 and -3
	3. Re-write the quadratic, replacing bx with	$3.6x^2 + 8x - 3x - 4$
	the two numbers you found. 4. Factorise in pairs – you should get the	4. Factorise in pairs: $2x(3x+4) = 1(3x+4)$
	same bracket twice	2x(3x + 4) - 1(3x + 4) 5. Answer = $(3x + 4)(2x - 1)$
	5. Write your two brackets – one will be the	
	repeated bracket, the other will be made of the factors outside each of the two brackets.	
8. Solving Quadratics by	Factorise the quadratic in the usual way. Solve = 0	Solve $2x^2 + 7x - 4 = 0$
Factorising		Factorise: $(2x - 1)(x + 4) = 0$
$(a \neq 1)$	Make sure the equation = 0 before	Factorise: $(2x - 1)(x + 4) = 0$ $x = \frac{1}{2} \text{ or } x = -4$
	factorising.	2 * " 1

Topic: Sequences

Topic/Skill	Definition/Tips	Example
1. Linear	A number pattern with a common	2, 5, 8, 11 is a linear sequence
Sequence	difference.	
2. Term	Each value in a sequence is called a term.	In the sequence 2, 5, 8, 11, 8 is the
		third term of the sequence.
2. Tana 4a	A	First town is 2. Town to town wile is
3. Term-to-	A rule which allows you to find the next	First term is 2. Term-to-term rule is
term rule	term in a sequence if you know the previous term.	'add 3'
	previous term.	Sequence is: 2 5 8 11
4. nth term	A rule which allows you to calculate the	Sequence is: 2, 5, 8, 11 nth term is $3n - 1$
	term that is in the nth position of the	
	sequence.	The 100^{th} term is $3 \times 100 - 1 = 299$
	Also known as the 'position-to-term' rule.	
	n refers to the position of a term in a	
	sequence.	F: 1.1
5. Finding the	1. Find the difference .	Find the nth term of: 3, 7, 11, 15
nth term of a linear	 2. Multiply that by n. 3. Substitute n = 1 to find out what 	1. Difference is +4
sequence	number you need to add or subtract to	2. Start with 4n
sequence	get the first number in the sequence.	3. $4 \times 1 = 4$, so we need to subtract 1
	get the mist number in the sequence.	to get 3.
		nth term = 4n - 1
6. Fibonacci	A sequence where the next number is found	The Fibonacci sequence is:
type sequences	by adding up the previous two terms	1,1,2,3,5,8,13,21,34
		An example of a Fibonacci-type
		sequence is:
7.0		4, 7, 11, 18, 29
7. Geometric	A sequence of numbers where each term is	An example of a geometric sequence is:
Sequence	found by multiplying the previous one by a number called the common ratio, r .	2, 10, 50, 250 The common ratio is 5
	a number cance the common ratio, 1 .	The common ratio is 3
		Another example of a geometric
		sequence is:
		81, -27, 9, -3, 1
		The common ratio is $-\frac{1}{3}$
8. Quadratic	A sequence of numbers where the second	2 6 12 20 30 42
Sequence	difference is constant.	+4 +6 +8 +10 +12
Sequence	difference is consumit.	70 70 710 712
	A quadratic sequence will have a n^2 term.	+2 +2 +2 +2
9. nth term of a	ar^{n-1}	The nth term of 2, 10, 50, 250 Is
geometric		
sequence	where a is the first term and r is the	$2 \times 5^{n-1}$
	common ratio	

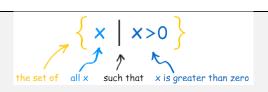
10. nth term of	1. Find the first and second differences.	Find the nth term of: 4, 7, 14, 25, 40
a quadratic	2. Halve the second difference and multiply	
sequence	this by n^2 .	Answer:
	3. Substitute $n = 1,2,3,4$ into your	Second difference = $+4 \rightarrow$ nth term =
	expression so far.	$2n^2$
	4. Subtract this set of numbers from the	
	corresponding terms in the sequence from	Sequence: 4, 7, 14, 25, 40
	the question.	$2n^2$ 2, 8, 18, 32, 50
	5. Find the nth term of this set of numbers.	Difference: 2, -1, -4, -7, -10
	6. Combine the nth terms to find the overall	, , , ,
	nth term of the quadratic sequence.	Nth term of this set of numbers is
	•	-3n + 5
	Substitute values in to check your nth term	
	works for the sequence.	Overall nth term: $2n^2 - 3n + 5$
		0 7 00000 0000 00000
11. Triangular	The sequence which comes from a pattern	4 0 0 40
numbers	of dots that form a triangle.	1 3 6 10
	1, 3, 6, 10, 15, 21	
	_, _, _, _, _, _,	

Topic: Coordinates and Linear Graphs

Topic/Skill	Definition/Tips	Example
1. Coordinates	Written in pairs. The first term is the x-coordinate (movement across). The second term is the y-coordinate (movement up or down)	A: (4,7) B: (-6,-3) B: (-6,-3)
2. Midpoint of a Line	Method 1: add the x coordinates and divide by 2, add the y coordinates and divide by 2 Method 2: Sketch the line and find the values half way between the two x and two y values.	Find the midpoint between $(2,1)$ and $(6,9)$ $\frac{2+6}{2} = 4 \text{ and } \frac{1+9}{2} = 5$ So, the midpoint is $(4,5)$
3. Linear Graph	Straight line graph. The general equation of a linear graph is $y = mx + c$ where m is the gradient and c is the y-intercept. The equation of a linear graph can contain	Example: Other examples: $x = y$ $y = 4$ $x = -2$ $y = 2x - 7$ $y + x = 10$ $2y - 4x = 12$
4. Plotting Linear Graphs	an x-term , a y-term and a number . Method 1: Table of Values Construct a table of values to calculate coordinates.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Method 2: Gradient-Intercept Method (use when the equation is in the form $y = mx + c$) 1. Plots the y-intercept 2. Using the gradient, plot a second point. 3. Draw a line through the two points plotted.	$y = \frac{3}{2}x + 1$ 3
	Method 3: Cover-Up Method (use when the equation is in the form $ax + by = c$) 1. Cover the x term and solve the resulting equation. Plot this on the $x - axis$. 2. Cover the y term and solve the resulting equation. Plot this on the $y - axis$. 3. Draw a line through the two points plotted.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

5. Gradient	The gradient of a line is how steep it is.	Gradient = $4/2 = 2$
	Gradient = $\frac{Change \ in \ y}{Change \ in \ x} = \frac{Rise}{Run}$	Gradient = -3/1 = -3
	The gradient can be positive (sloping upwards) or negative (sloping downwards)	1 1
6. Finding the Equation of a Line given a point and a gradient	Substitute in the gradient (m) and point (x,y) in to the equation $y = mx + c$ and solve for c.	Find the equation of the line with gradient 4 passing through (2,7). $y = mx + c$ $7 = 4 \times 2 + c$ $c = -1$
7. Finding the Equation of a Line given two points	Use the two points to calculate the gradient. Then repeat the method above using the gradient and either of the points.	$y = 4x - 1$ Find the equation of the line passing through (6,11) and (2,3) $m = \frac{11 - 3}{6 - 2} = 2$ $y = mx + c$ $11 = 2 \times 6 + c$ $c = -1$
8. Parallel Lines	If two lines are parallel , they will have the same gradient . The value of m will be the same for both lines.	$y = 2x - 1$ Are the lines $y = 3x - 1$ and $2y - 6x + 10 = 0$ parallel? Answer: Rearrange the second equation in to the form $y = mx + c$ $2y - 6x + 10 = 0 \rightarrow y = 3x - 5$ Since the two gradients are equal (3), the lines are parallel.
9. Perpendicular Lines	If two lines are perpendicular , the product of their gradients will always equal -1 . The gradient of one line will be the negative reciprocal of the gradient of the other line. You may need to rearrange equations of lines to compare gradients (they need to be in the form $y = mx + c$)	Find the equation of the line perpendicular to $y = 3x + 2$ which passes through $(6,5)$ Answer: As they are perpendicular, the gradient of the new line will be $-\frac{1}{3}$ as this is the negative reciprocal of 3. $y = mx + c$

	Or	$5 = -\frac{1}{3} \times 6 + c$ $c = 7$ $y = -\frac{1}{3}x + 7$
		3x + x - 7 = 0


Topic: Inequalities

Topic/Skill	Definition/Tips	Example
1. Inequality	An inequality says that two values are not	7 ≠ 3
	equal.	
		$x \neq 0$
2 Inequality	$a \neq b$ means that a is not equal to b.	State the integers that satisfy
2. Inequality symbols	x > 2 means x is greater than 2 x < 3 means x is less than 3	State the integers that satisfy $-2 < x \le 4$.
symbols	$x \ge 1$ means x is greater than or equal to	2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	1	-1, 0, 1, 2, 3, 4
	$x \le 6$ means x is less than or equal to 6	
3. Inequalities	Inequalities can be shown on a number line.	
on a Number		-2 -1 0 1 2 3 $x \ge 0$
Line	Open circles are used for numbers that are	→ · · · · · · · · · · · · · · · · · · ·
	less than or greater than $(< or >)$	
	Closed circles are used for numbers that	-5 -4 -3 -2 -1 0 1 2 3 4 5 x < 2
	are less than or equal or greater than or	
	equal $(\leq or \geq)$	$-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 \le x < 4$
4. Graphical	Inequalities can be represented on a	Shade the region that satisfies:
Inequalities	coordinate grid.	$y > 2x, x > 1 \text{ and } y \le 3$
	If the inequality is strict $(x > 2)$ then use a	
	If the inequality is strict $(x > 2)$ then use a dotted line .	y = 2x
	If the inequality is not strict ($x \le 6$) then	4
	use a solid line .	y = 3
	Shade the region which satisfies all the	2
	inequalities.	x = 1
		/
		9 2 4
5. Quadratic	Sketch the quadratic graph of the	Solve the inequality $x^2 - x - 12 < 0$
Inequalities	inequality.	
_		Sketch the quadratic:
	If the expression is $> or \ge$ then the answer	
	will be above the x-axis.	-3\
	If the expression is $< or \le$ then the answer will be below the x-axis .	
	will be below the x-axis.	
	Look carefully at the inequality symbol in	-
	the question.	The required region is below the x-axis,
		so the final answer is:
	Look carefully if the quadratic is a positive	-3 < x < 4
	or negative parabola.	10.1
		If the question had been > 0, the answer would have been:
		answer would have been: $x < -3 \text{ or } x > 4$
6. Set Notation	A set is a collection of things , usually	$\{3,6,9\}$ is a set.
	numbers, denoted with brackets { }	(-, -, -)

 $\{x \mid x \ge 7\}$ means 'the set of all x's, such that x is greater than or equal to 7'

The 'x' can be replaced by any letter.

Some people use ':' instead of '|'

 ${x: -2 \le x < 5}$

Topic: Simultaneous Equations

7. Solving Linear and Quadratic Simultaneous Equations	Method 1: If both equations are in the same form (eg. Both $y =$): 1. Set the equations equal to each other . 2. Rearrange to make the equation equal to zero . 3. Solve the quadratic equation. 4. Substitute the values back in to one of the equations. Method 2: If the equations are not in the same form: 1. Rearrange the linear equation into the form $y =$ or $x =$ 2. Substitute in to the quadratic equation. 3. Rearrange to make the equation equal to zero . 4. Solve the quadratic equation. 5. Substitute the values back in to one of the equations. You should get two pairs of solutions (two values for x , two values for y .) Graphically, you should have two points of intersection .	Example 1 Solve $y = x^{2} - 2x - 5 \text{ and } y = x - 1$ $x^{2} - 2x - 5 = x - 1$ $x^{2} - 3x - 4 = 0$ $(x - 4)(x + 1) = 0$ $x = 4 \text{ and } x = -1$ $y = 4 - 1 = 3 \text{ and } y = -1 - 1 = -2$ Answers: (4,3) and (-1,-2) $\frac{\text{Example } 2}{\text{Solve } x^{2} + y^{2}} = 5 \text{ and } x + y = 3$ $x = 3 - y$ $(3 - y)^{2} + y^{2} = 5$ $9 - 6y + y^{2} + y^{2} = 5$ $2y^{2} - 6y + 4 = 0$ $y^{2} - 3y + 2 = 0$ $(y - 1)(y - 2) = 0$ $y = 1 \text{ and } y = 2$ $x = 3 - 1 = 2 \text{ and } x = 3 - 2 = 1$ Answers: (2,1) and (1,2)
4. Solving Simultaneous Equations (by Elimination) 5. Solving Simultaneous Equations (by Substitution)	 Balance the coefficients of one of the variables. Eliminate this variable by adding or subtracting the equations (Same Sign Subtract, Different Sign Add) Solve the linear equation you get using the other variable. Substitute the value you found back into one of the previous equations. Solve the equation you get. Check that the two values you get satisfy Both of the original equations. Rearrange one of the equations into the form y = or x = Substitute the right-hand side of the rearranged equation into the other equation. Expand and solve this equation. Substitute the value into the y = or x = equation. 	Solution: $x = 1, y = 2$ $y - 2x = 3$ $3x + 4y = 1$ Rearrange: $y - 2x = 3 \rightarrow y = 2x + 3$ Substitute: $3x + 4(2x + 3) = 1$ Solve: $3x + 8x + 12 = 1$

	5. Check that the two values you get satisfy both of the original equations.	$ 11x = -11 \\ x = -1 $
		Substitute: $y = 2 \times -1 + 3$ y = 1
		Solution: $x = -1, y = 1$
6. Solving Simultaneous	Draw the graphs of the two equations.	y = 2x - 1
Equations (Graphically)	The solutions will be where the lines meet.	y = 5 - x
	The solution can be written as a coordinate.	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		y = 5 - x and $y = 2x - 1$.
		They meet at the point with coordinates $(2,3)$ so the answer is $x = 2$ and $y = 3$

Topic/Skill	Definition/Tips	Example
1. Function Machine	Takes an input value, performs some operations and produces an output value.	INPUT x 3 + 4 OUTPUT
2. Function	A relationship between two sets of values.	$f(x) = 3x^2 - 5$ 'For any input value, square the term, then multiply by 3, then subtract 5'.
3. Function notation	f(x) x is the input value $f(x)$ is the output value.	f(x) = 3x + 11 Suppose the input value is $x = 5$ The output value is $f(5) = 3 \times 5 + 11 = 26$
4. Inverse function	$f^{-1}(x)$ A function that performs the opposite process of the original function. 1. Write the function as $y = f(x)$ 2. Rearrange to make x the subject. 3. Replace the y with x and the x with $f^{-1}(x)$	$f(x) = (1 - 2x)^{5}. \text{ Find the inverse.}$ $y = (1 - 2x)^{5}$ $\sqrt[5]{y} = 1 - 2x$ $1 - \sqrt[5]{y} = 2x$ $\frac{1 - \sqrt[5]{y}}{2} = x$ $f^{-1}(x) = \frac{1 - \sqrt[5]{x}}{2}$
5. Composite function	A combination of two or more functions to create a new function. $fg(x)$ is the composite function that substitutes the function $g(x)$ into the function $f(x)$. $fg(x)$ means 'do g first, then f' $gf(x)$ means 'do f first, then g'	$f(x) = 5x - 3, g(x) = \frac{1}{2}x + 1$ What is $fg(4)$? $g(4) = \frac{1}{2} \times 4 + 1 = 3$ $f(3) = 5 \times 3 - 3 = 12 = fg(4)$ What is $fg(x)$? $fg(x) = 5\left(\frac{1}{2}x + 1\right) - 3 = \frac{5}{2}x + 2$

Topic: Graphs and Graph Transformations

2. Linear	second term is the y-coordinate (movement up or down)	10 8 A A A 2 2 4 6 8 10 B 4 6 8 10 -6 8 -6 -8 -10
Graph	Straight line graph. The equation of a linear graph can contain an x-term, a y-term and a number.	Example: Other examples: $x = y$ $y = 4$ $x = -2$ $y = 2x - 7$ $y + x = 10$ $2y - 4x = 12$
3. Quadratic Graph	A 'U-shaped' curve called a parabola. The equation is of the form $y = ax^2 + bx + c$, where a , b and c are numbers, $a \ne 0$. If $a < 0$, the parabola is upside down .	y = x ² -4x-5
4. Cubic Graph	The equation is of the form $y = ax^3 + k$, where k is an number. If $a > 0$, the curve is increasing. If $a < 0$, the curve is decreasing.	a>0
5. Reciprocal Graph	The equation is of the form $y = \frac{A}{x}$, where A is a number and $x \neq 0$. The graph has asymptotes on the x-axis and y-axis.	y = 1/x
6. Asymptote	A straight line that a graph approaches but never touches.	horizontal asymptote vertical asymptote x

Topic: Iteration

T. opic/Skilltial	Prefinition This sof the form $y = a^x$, where	
Grliphation	The actuation repeating the passess over and	4 /-
Grupir	over estimostephyiteteasis of	
	approximating desire dressels as ore	2
	The graph has an asymptote which is the	
	x-axis .	-2 0 2
$8. y = \sin x$	Regularization: $x_{n+1} = \sqrt{3x_n + 6}$	y _{1.0} graph of $y = \sin \theta$
o. y siii x	(0,0), (90,1), (180,0), (270,-1), (360,0)	
2. Iterative	To create an iterative formula, rearrange	I de la constant de l
Method	anisquestion with the ort trates anth ante im to	p 90° 180° 270° 360° 450° 540° 630° 720°
	Predector positishever teriors the subject.	d +10
$9. y = \cos x$	Key Coordinates:	χ 10 graph of y = cosine θ
-	(360, 1) (360, 1) (360, 1) (360, 1)	
	substitute in, often called x_1 .	A
	y is never more than 1 or less than -1.	90 180 270 360 450 540 630 720
	Katepraubstitustingrim 3600fr previous	+10
10. $y = \tan x$	waswevordinateur answers are the same to	S graph of y = tan 0
	a ce(103,10)d(415,e10)f (41315;a=31.)T(11810,00)]ed	56-
	converg 225 ,013,1(3415,-1), (360,0)	
	Wsythstored Sit kuttogonarypur sakrahator to	90° 180° 270° 360° 450° 540° 630° 720°
	kane substituting in the previous answer.	4- / / /
11. f(x) + a	Vertical translation up a units (0)	$V_{\text{con ro}} = \frac{f(x) \cdot y}{f(x) + 3} \cdots$
	Vertical translation up a units. $\binom{0}{a}$	Keep re
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		$x_7 = \frac{1}{2} \frac{3dp}{2dp}$
		$x_8 = \frac{1}{3 \cdot 2 \cdot 1} \cdot \frac{1}{1 \cdot 2} \cdot \frac{3}{3} \cdot \frac{4}{5} \cdot \frac{5}{5} \times \frac{3}{1} \cdot \frac{1}{5} \times \frac{1}{1} \cdot \frac{1}{1$
		So answ
		SO allsw
		4 f(x) +(-2)
12. f(x+a)	Horizontal translation <u>left</u> a units. $\begin{pmatrix} -a \\ 0 \end{pmatrix}$	$f(x+2)$ $f(x)$ $\uparrow y$ $f(x-2)$
	Troffzontal translation <u>left</u> a units. (0)	
		-5 -4 -3 -2 1 1 2 3 4 5 × x
		1
13. $-f(x)$	Reflection over the x-axis.	y f(α)
		<u> </u>
		2
		-3 -2 -1 1 2 3 4 5 × x
		-1
		- f (x) MathBits.com
14. $f(-x)$	Reflection over the y-axis.	f(-x) y f(x)
		5 4 3 2 1 1 2 3 4 5 x
		-2
		

Subject: Maths

Topic: Iteration

Topic/Skill	Definition/Tips	Example
1. Iteration	The act of repeating a process over and over again, often with the aim of approximating a desired result more closely. Recursive Notation: $x_{n+1} = \sqrt{3x_n + 6}$	$x_1 = 4$ $x_2 = \sqrt{3 \times 4 + 6} = 4.242640 \dots$ $x_3 = \sqrt{3 \times 4.242640 \dots + 6}$ $= 4.357576 \dots$
2. Iterative Method	To create an iterative formula, rearrange an equation with more than one x term to make one of the x terms the subject . You will be given the first value to substitute in, often called x_1 . Keep substituting in your previous answer until your answers are the same to a certain degree of accuracy. This is called converging to a limit. Use the 'ANS' button on your calculator to keep substituting in the previous answer.	Use an iterative formula to find the positive root of $x^2 - 3x - 6 = 0$ to 3 decimal places. $x_1 = 4$ Answer: $x^2 = 3x + 6$ $x = \sqrt{3x + 6}$ So $x_{n+1} = \sqrt{3x_n + 6}$ $x_1 = 4$ $x_2 = \sqrt{3 \times 4 + 6} = 4.242640 \dots$ $x_3 = \sqrt{3 \times 4.242640 \dots + 6}$ $= 4.357576 \dots$ Keep repeating $x_7 = 4.372068 \dots = 4.372 (3dp)$ $x_8 = 4.372208 \dots = 4.372 (3dp)$ So answer is $x = 4.372 (3dp)$
Subject: Ma	ths	

Topic: Algebraic Fractions

Topic/Skill	Definition/Tips	Example
1. Algebraic Fraction	A fraction whose numerator and denominator are algebraic expressions .	$\frac{6x}{3x-1}$
2. Adding/ Subtracting Algebraic Fractions	For $\frac{a}{b} \pm \frac{c}{d}$, the common denominator is bd $\frac{a}{b} \pm \frac{c}{d} = \frac{ad}{bd} \pm \frac{bc}{bd} = \frac{ad \pm bc}{bd}$	$= \frac{\frac{1}{x} + \frac{x}{2y}}{\frac{1}{2xy}}$ $= \frac{\frac{1}{2xy} + \frac{x(x)}{2xy}}{\frac{2xy}{2xy}}$ $= \frac{\frac{2y + x^2}{2xy}}{\frac{2xy}{2xy}}$
3. Multiplying Algebraic Fractions	Multiply the numerators together and the denominators together. $\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$	$= \frac{2y + x^2}{2xy}$ $= \frac{x}{3} \times \frac{x + 2}{x - 2}$ $= \frac{x(x + 2)}{3(x - 2)}$ $= \frac{x^2 + 2x}{3x - 6}$
4. Dividing Algebraic Fractions	Multiply the first fraction by the reciprocal of the second fraction. $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$	$\frac{x}{3} \div \frac{2x}{7}$ $= \frac{x}{3} \times \frac{7}{2x}$ $= \frac{7x}{6x} = \frac{7}{6}$ $\frac{x^2 + x - 6}{2x - 4} = \frac{(x+3)(x-2)}{2(x-2)} = \frac{x+3}{2}$
5. Simplifying Algebraic Fractions	Factorise the numerator and denominator and cancel common factors.	$\frac{x^2 + x - 6}{2x - 4} = \frac{(x+3)(x-2)}{2(x-2)} = \frac{x+3}{2}$

Subject: Maths

Topic: Proofs

A mathematical statement written using symbols, numbers or letters, A statement showing that two expressions	$3x + 2 \text{ or } 5y^2$
are equal	2y - 17 = 15
An equation that is true for all values of the variables	$2x \equiv x + x$
An identity uses the symbol: ≡	
Shows the relationship between two or more variables	Area of a rectangle = length x width or A= LxW
A number used to multiply a variable.	6z
It is the number that comes before/in front	6 is the coefficient
of a letter.	z is the variable
An odd number is an integer which is not a	If n is an integer (whole number):
multiple of 2.	An even number can be represented by 2n or 2m etc.
	An odd number can be represented by
	2n-1 or 2n+1 or 2m+1 etc.
Whole numbers that follow each other in order.	If n is an integer:
	n, n+1, n+2 etc. are consecutive integers.
A term that is produced by multiply another	If n is an integer:
term by itself.	<u> </u>
	n^2 , m^2 etc. are square integers
The sum of two or more numbers is the value you get when you add them together.	The sum of 4 and 6 is 10
The product of two or more numbers is the value you get when you multiply them together.	The product of 4 and 6 is 24
	$4n^2 + 8n - 12$ is a multiple of 4
	because it can be written as:
factor out the number.	$4(n^2+2n-3)$
	An equation that is true for all values of the variables An identity uses the symbol: Shows the relationship between two or more variables A number used to multiply a variable . It is the number that comes before/in front of a letter. An even number is a multiple of 2 An odd number is an integer which is not a multiple of 2 . Whole numbers that follow each other in order. A term that is produced by multiply another term by itself. The sum of two or more numbers is the value you get when you add them together. The product of two or more numbers is the value you get when you multiply them