Topic:
Algebra

Topic/Skill	Definition/Tips	Example
1. Expression	A mathematical statement written using symbols, numbers or letters,	$3 \mathrm{x}+2$ or $5 y^{2}$
2. Equation	A statement showing that two expressions are equal	$2 \mathrm{y}-17=15$
3. Identity	An equation that is true for all values of the variables An identity uses the symbol: \equiv	$2 x \equiv x+x$
4. Formula	Shows the relationship between two or more variables	Area of a rectangle $=$ length x width or $\mathrm{A}=\mathrm{LxW}$
5. Simplifying Expressions	Collect 'like terms'. Be careful with negatives. x^{2} and x are not like terms.	$\begin{aligned} 2 x+3 y+4 x & -5 y+3 \\ & =6 x-2 y+3 \\ 3 x+4-x^{2}+2 x & -1=5 x-x^{2}+3 \end{aligned}$
6. x times x	The answer is x^{2} not $2 x$.	Squaring is multiplying by itself, not by 2.
7. $p \times p \times p$	The answer is p^{3} not $3 p$	If $\mathrm{p}=2$, then $p^{3}=2 \times 2 \times 2=8$, not $2 \times 3=6$
8. $p+p+p$	The answer is 3 p not p^{3}	If $\mathrm{p}=2$, then $2+2+2=6, \operatorname{not} 2^{3}=8$
9. Expand	To expand a bracket, multiply each term in the bracket by the expression outside the bracket.	$3(m+7)=3 x+21$
10. Factorise	The reverse of expanding. Factorising is writing an expression as a product of terms by 'taking out' a common factor.	$6 x-15=3(2 x-5)$, where 3 is the common factor.

\(\left.$$
\begin{array}{|l|l|l|}\hline \text { Topic/Skill } & \text { Definition/Tips } & \text { Example } \\
\hline \text { 1. Solve } & \begin{array}{l}\text { To find the answer/value of something } \\
\text { Use inverse operations on both sides of } \\
\text { the equation (balancing method) until you } \\
\text { find the value for the letter. }\end{array} & \begin{array}{l}\text { Solve } 2 x-3=7 \\
\text { Add } 3 \text { on both sides } \\
2 x=10\end{array}
$$ \\
Divide by 2 on both sides \\

x=5\end{array}\right]\)| The inverse of addition is subtraction. |
| :--- |
| The inverse of multiplication is |
| division. |

Topic/Skill	Definition/Tips	Example
1. Quadratic	A quadratic expression is of the form $a x^{2}+b x+c$ where a, b and c are numbers, $\boldsymbol{a} \neq \mathbf{0}$	Examples of quadratic expressions: $\begin{gathered} x^{2} \\ 8 x^{2}-3 x+7 \end{gathered}$ Examples of non-quadratic expressions: $\begin{gathered} 2 x^{3}-5 x^{2} \\ 9 x-1 \\ \hline \end{gathered}$
2. Factorising Quadratics	When a quadratic expression is in the form $x^{2}+b x+c$ find the two numbers that add to give b and multiply to give c.	$x^{2}+7 x+10=(x+5)(x+2)$ (because 5 and 2 add to give 7 and multiply to give 10) $x^{2}+2 x-8=(x+4)(x-2)$ (because +4 and -2 add to give +2 and multiply to give -8)
3. Difference of Two Squares	An expression of the form $\boldsymbol{a}^{2}-\boldsymbol{b}^{2}$ can be factorised to give $(\boldsymbol{a}+\boldsymbol{b})(\boldsymbol{a}-\boldsymbol{b})$	$\begin{aligned} x^{2}-25 & =(x+5)(x-5) \\ 16 x^{2}-81 & =(4 x+9)(4 x-9) \end{aligned}$
4. Solving Quadratics $\left(a x^{2}=b\right)$	Isolate the x^{2} term and square root both sides. Remember there will be a positive and a negative solution.	$\begin{gathered} 2 x^{2}=98 \\ x^{2}=49 \\ x= \pm 7 \end{gathered}$
5. Solving Quadratics $\left(a x^{2}+b x=\right.$ 0)	Factorise and then solve $=0$.	$\begin{gathered} x^{2}-3 x=0 \\ x(x-3)=0 \\ x=0 \text { or } x=3 \end{gathered}$
6. Solving Quadratics by Factorising ($a=1$)	Factorise the quadratic in the usual way. Solve $=0$ Make sure the equation $=0$ before factorising.	Solve $x^{2}+3 x-10=0$ Factorise: $\begin{gathered} (x+5)(x-2)=0 \\ x=-5 \text { or } x=2 \end{gathered}$
7. Factorising Quadratics when $a \neq 1$	When a quadratic is in the form $a x^{2}+b x+c$ 1. Multiply a by $\mathrm{c}=\mathrm{ac}$ 2. Find two numbers that add to give b and multiply to give ac. 3. Re-write the quadratic, replacing $b x$ with the two numbers you found. 4. Factorise in pairs - you should get the same bracket twice 5. Write your two brackets - one will be the repeated bracket, the other will be made of the factors outside each of the two brackets.	Factorise $6 x^{2}+5 x-4$ 1. $6 \times-4=-24$ 2. Two numbers that add to give +5 and multiply to give -24 are +8 and -3 3. $6 x^{2}+8 x-3 x-4$ 4. Factorise in pairs: $\begin{array}{r} 2 x(3 x+4)-1(3 x+4) \\ \text { 5. Answer }=(3 x+4)(2 x-1) \end{array}$
8. Solving Quadratics by Factorising $(a \neq 1)$	Factorise the quadratic in the usual way. Solve $=0$ Make sure the equation $=0$ before factorising.	Solve $2 x^{2}+7 x-4=0$ Factorise: $\begin{aligned} & (2 x-1)(x+4)=0 \\ & x=\frac{1}{2} \text { or } x=-4 \end{aligned}$

Topic/Skill	Definition/Tips	Example
1. Linear Sequence	A number pattern with a common difference.	$2,5,8,11 \ldots$ is a linear sequence
2. Term	Each value in a sequence is called a term.	In the sequence $2,5,8,11 \ldots, 8$ is the third term of the sequence.
3. Term-toterm rule	A rule which allows you to find the next term in a sequence if you know the previous term.	First term is 2 . Term-to-term rule is 'add 3' Sequence is: $2,5,8,11 \ldots$
4. nth term	A rule which allows you to calculate the term that is in the nth position of the sequence. Also known as the 'position-to-term' rule. \mathbf{n} refers to the position of a term in a sequence.	nth term is $3 n-1$ The $100^{\text {th }}$ term is $3 \times 100-1=299$
5. Finding the nth term of a linear sequence	1. Find the difference. 2. Multiply that by \boldsymbol{n}. 3. Substitute $n=1$ to find out what number you need to add or subtract to get the first number in the sequence.	Find the nth term of: 3, 7, 11, 15... 1. Difference is +4 2. Start with $4 n$ 3. $4 \times 1=4$, so we need to subtract 1 to get 3 . nth term $=4 n-1$
6. Fibonacci type sequences	A sequence where the next number is found by adding up the previous two terms	The Fibonacci sequence is: $1,1,2,3,5,8,13,21,34 \ldots$ An example of a Fibonacci-type sequence is: $4,7,11,18,29 \ldots$
7. Geometric Sequence	A sequence of numbers where each term is found by multiplying the previous one by a number called the common ratio, \mathbf{r}.	An example of a geometric sequence is: $2,10,50,250 \ldots$ The common ratio is 5 Another example of a geometric sequence is: $81,-27,9,-3,1 \ldots$ The common ratio is $-\frac{1}{3}$
8. Quadratic Sequence	A sequence of numbers where the second difference is constant. A quadratic sequence will have a n^{2} term.	
9. nth term of a geometric sequence	$a r^{n-1}$ where a is the first term and r is the common ratio	The nth term of $2,10,50,250 \ldots$. Is $2 \times 5^{n-1}$

10. nth term of a quadratic sequence	1. Find the first and second differences. 2. Halve the second difference and multiply this by n^{2}. 3. Substitute $n=1,2,3,4 \ldots$ into your expression so far. 4. Subtract this set of numbers from the corresponding terms in the sequence from the question. 5. Find the nth term of this set of numbers. 6. Combine the nth terms to find the overall nth term of the quadratic sequence. Substitute values in to check your nth term works for the sequence.	Find the nth term of: $4,7,14,25,40$.. Answer: Second difference $=+4 \rightarrow$ nth term $=$ $2 n^{2}$ Sequence: $4,7,14,25,40$ $2 n^{2} \quad 2,8,18,32,50$ Difference: $2,-1,-4,-7,-10$ Nth term of this set of numbers is $-3 n+5$ Overall nth term: $2 n^{2}-3 n+5$
11. Triangular numbers	The sequence which comes from a pattern of dots that form a triangle. $1,3,6,10,15,21 \ldots$	$\begin{array}{cccc} 1 & 3 & 6 & 10 \\ 0 & 0 & 0 & 0 \\ & 0 & 0 & 0 \\ & & 0 & 0 \end{array}$

Topic/Skill	Definition/Tips	Example
1. Coordinates	Written in pairs. The first term is the \mathbf{x} coordinate (movement across). The second term is the y-coordinate (movement up or down)	 A: $(4,7)$ B: $(-6,-3)$
2. Midpoint of a Line	Method 1: add the \mathbf{x} coordinates and divide by 2 , add the y coordinates and divide by 2 Method 2: Sketch the line and find the values half way between the two x and two y values.	Find the midpoint between $(2,1)$ and $(6,9)$ $\frac{2+6}{2}=4 \text { and } \frac{1+9}{2}=5$ So, the midpoint is $(4,5)$
3. Linear Graph	Straight line graph. The general equation of a linear graph is $y=m x+c$ where \boldsymbol{m} is the gradient and c is the \mathbf{y} intercept. The equation of a linear graph can contain an \mathbf{x}-term, a y-term and a number.	Example: Other examples: $\begin{aligned} & x=y \\ & y=4 \\ & x=-2 \\ & y=2 x-7 \\ & y+x=10 \\ & 2 y-4 x=12 \end{aligned}$
4. Plotting Linear Graphs	Method 1: Table of Values Construct a table of values to calculate coordinates. Method 2: Gradient-Intercept Method (use when the equation is in the form $y=$ $m x+c$) 1. Plots the y-intercept 2. Using the gradient, plot a second point. 3. Draw a line through the two points plotted. Method 3: Cover-Up Method (use when the equation is in the form $a x+b y=c$) 1. Cover the x term and solve the resulting equation. Plot this on the x-axis. 2. Cover the y term and solve the resulting equation. Plot this on the y-axis. 3. Draw a line through the two points plotted.	\mathbf{x} -3 -2 -1 0 1 2 3 $\mathbf{y}=\mathbf{x}+\mathbf{3}$ 0 1 2 3 4 5 6$2 x+4 y=8$

5. Gradient	The gradient of a line is how steep it is. Gradient = $\frac{\text { Change in } y}{\text { Change in } x}=\frac{\text { Rise }}{\text { Run }}$ The gradient can be positive (sloping upwards) or negative (sloping downwards)	
6 . Finding the Equation of a Line given a point and a gradient	Substitute in the gradient (m) and point (\mathbf{x}, \mathbf{y}) in to the equation $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{c}$ and solve for c.	Find the equation of the line with gradient 4 passing through (2,7). $\begin{gathered} y=m x+c \\ 7=4 \times 2+c \\ c=-1 \\ y=4 x-1 \end{gathered}$
7. Finding the Equation of a Line given two points	Use the two points to calculate the gradient. Then repeat the method above using the gradient and either of the points.	Find the equation of the line passing through $(6,11)$ and $(2,3)$ $\begin{gathered} m=\frac{11-3}{6-2}=2 \\ y=m x+c \\ 11=2 \times 6+c \\ c=-1 \\ y=2 x-1 \end{gathered}$
8. Parallel Lines	If two lines are parallel, they will have the same gradient. The value of m will be the same for both lines.	Are the lines $y=3 x-1$ and $2 y-$ $6 x+10=0$ parallel? Answer: Rearrange the second equation in to the form $y=m x+c$ $2 y-6 x+10=0 \rightarrow y=3 x-5$ Since the two gradients are equal (3), the lines are parallel.
9. Perpendicular Lines	If two lines are perpendicular, the product of their gradients will always equal -1. The gradient of one line will be the negative reciprocal of the gradient of the other line. You may need to rearrange equations of lines to compare gradients (they need to be in the form $y=m x+c$)	Find the equation of the line perpendicular to $y=3 x+2$ which passes through $(6,5)$ Answer: As they are perpendicular, the gradient of the new line will be $-\frac{1}{3}$ as this is the negative reciprocal of 3 . $y=m x+c$

		$5=-\frac{1}{3} \times 6+c$ $c=7$
	Or	$y=-\frac{1}{3} x+7$
$3 x+x-7=0$		

Topic: Inequalities

Topic/Skill	Definition/Tips	Example
1. Inequality	An inequality says that two values are not equal. $a \neq b \text { means that } \mathrm{a} \text { is not equal to } \mathrm{b} \text {. }$	$\begin{aligned} & 7 \neq 3 \\ & x \neq 0 \end{aligned}$
2. Inequality symbols	$x>2$ means x is greater than 2 $x<3$ means x is less than 3 $x \geq 1$ means \mathbf{x} is greater than or equal to 1 $x \leq 6$ means x is less than or equal to 6	State the integers that satisfy $\begin{gathered} -2<x \leq 4 \\ -1,0,1,2,3,4 \end{gathered}$
3. Inequalities on a Number Line	Inequalities can be shown on a number line. Open circles are used for numbers that are less than or greater than $(<$ or $>$) Closed circles are used for numbers that are less than or equal or greater than or equal (\leq or \geq)	
4. Graphical Inequalities	Inequalities can be represented on a coordinate grid. If the inequality is strict $(x>2)$ then use a dotted line. If the inequality is not strict $(x \leq 6)$ then use a solid line. Shade the region which satisfies all the inequalities.	Shade the region that satisfies: $y>2 x, x>1$ and $y \leq 3$
5. Quadratic Inequalities	Sketch the quadratic graph of the inequality. If the expression is $>\boldsymbol{o r} \geq$ then the answer will be above the \mathbf{x}-axis. If the expression is $<\boldsymbol{o r} \leq$ then the answer will be below the \mathbf{x}-axis. Look carefully at the inequality symbol in the question. Look carefully if the quadratic is a positive or negative parabola.	Solve the inequality $x^{2}-x-12<0$ Sketch the quadratic: The required region is below the x -axis, so the final answer is: $-3<x<4$ If the question had been >0, the answer would have been: $x<-3 \text { or } x>4$
6. Set Notation	A set is a collection of things, usually numbers, denoted with brackets $\{\quad\}$	$\{3,6,9\}$ is a set.

	$\{x \mid x \geq 7\}$ means 'the set of all x 's, such that x is greater than or equal to 7' The ' x ' can be replaced by any letter. Some people use ' $:$ ' instead of ' $\mid '$

7. Solving Linear and Quadratic Simultaneous Equations	Method 1: If both equations are in the same form (eg. Both $y=\ldots$): 1. Set the equations equal to each other. 2. Rearrange to make the equation equal to zero. 3. Solve the quadratic equation. 4. Substitute the values back in to one of the equations. Method 2: If the equations are not in the same form: 1. Rearrange the linear equation into the form $y=$... or $x=$... 2. Substitute in to the quadratic equation. 3. Rearrange to make the equation equal to zero. 4. Solve the quadratic equation. 5. Substitute the values back in to one of the equations. You should get two pairs of solutions (two values for x, two values for y.) Graphically, you should have two points of intersection.	Example 1 Solve $\begin{aligned} & y=x^{2}-2 x-5 \text { and } y=x-1 \\ & \quad x^{2}-2 x-5=x-1 \\ & \quad x^{2}-3 x-4=0 \\ & \quad(x-4)(x+1)=0 \\ & x=4 \text { and } x=-1 \\ & y=4-1=3 \text { and } \\ & y=-1-1=-2 \end{aligned}$ Answers: $(4,3)$ and $(-1,-2)$ Example 2 Solve $x^{2}+y^{2}=5$ and $x+y=3$ $\begin{gathered} x=3-y \\ (3-y)^{2}+y^{2}=5 \\ 9-6 y+y^{2}+y^{2}=5 \\ 2 y^{2}-6 y+4=0 \\ y^{2}-3 y+2=0 \\ (y-1)(y-2)=0 \\ y=1 \text { and } y=2 \\ x=3-1=2 \text { and } x=3-2=1 \end{gathered}$ Answers: $(2,1)$ and $(1,2)$
4. Solving Simultaneous Equations (by Elimination)	1. Balance the coefficients of one of the variables. 2. Eliminate this variable by adding or subtracting the equations (Same Sign Subtract, Different Sign Add) 3. Solve the linear equation you get using the other variable. 4. Substitute the value you found back into one of the previous equations. 5. Solve the equation you get. 6. Check that the two values you get satisfy Both of the original equations.	Solution: $x=1, y=2$
5. Solving Simultaneous Equations (by Substitution)	1. Rearrange one of the equations into the form $y=\ldots$ or $x=$... 2. Substitute the right-hand side of the rearranged equation into the other equation. 3. Expand and solve this equation. 4. Substitute the value into the $y=\ldots$ or $x=$... equation.	$\begin{gathered} y-2 x=3 \\ 3 x+4 y=1 \end{gathered}$ Rearrange: $y-2 x=3 \rightarrow y=2 x+3$ Substitute: $3 x+4(2 x+3)=1$ Solve: $3 x+8 x+12=1$

	5. Check that the two values you get satisfy both of the original equations.	$11 x=-11$ $x=-1$
Substitute: $y=2 \times-1+3$ $y=1$		
Simultaneous Equations (Graphically)	Draw the graphs of the two equations. The solutions will be where the lines meet. The solution can be written as a coordinate.	

Topic/Skill	Definition/Tips	Example
1. Function Machine	Takes an input value, performs some operations and produces an output value.	INPUT OUTPUT
2. Function	A relationship between two sets of values.	$f(x)=3 x^{2}-5$ 'For any input value, square the term, then multiply by 3 , then subtract 5 '.
3. Function notation	$f(x)$ \boldsymbol{x} is the input value $\boldsymbol{f}(\boldsymbol{x})$ is the output value.	$f(x)=3 x+11$ Suppose the input value is $x=5$ The output value is $f(5)=3 \times 5+$ $11=26$
4. Inverse function	$f^{-1}(x)$ A function that performs the opposite process of the original function. 1. Write the function as $y=f(x)$ 2. Rearrange to make x the subject. 3. Replace the \boldsymbol{y} with \boldsymbol{x} and the \boldsymbol{x} with $f^{-1}(x)$	$f(x)=(1-2 x)^{5}$. Find the inverse. $\begin{aligned} & y=(1-2 x)^{5} \\ & \sqrt[5]{y}=1-2 x \\ & 1-\sqrt[5]{y}=2 x \\ & \frac{1-\sqrt[5]{y}}{2}=x \end{aligned}$ $f^{-1}(x)=\frac{1-\sqrt[5]{x}}{2}$
5. Composite function	A combination of two or more functions to create a new function. $\boldsymbol{f} \boldsymbol{g}(\boldsymbol{x})$ is the composite function that substitutes the function $\boldsymbol{g}(\boldsymbol{x})$ into the function $f(x)$. $\boldsymbol{f} \boldsymbol{g}(\boldsymbol{x})$ means 'do g first, then f ' $\boldsymbol{g} \boldsymbol{f}(\boldsymbol{x})$ means 'do f first, then g '	$f(x)=5 x-3, g(x)=\frac{1}{2} x+1$ What is $f g(4)$? $\begin{gathered} g(4)=\frac{1}{2} \times 4+1=3 \\ f(3)=5 \times 3-3=12=f g(4) \end{gathered}$ What is $f g(x)$? $f g(x)=5\left(\frac{1}{2} x+1\right)-3=\frac{5}{2} x+2$

		$10 \hat{f}$ $8:$
	second term is the y-coordinate (movement up or down)	
2. Linear Graph	Straight line graph. The equation of a linear graph can contain an \mathbf{x}-term, a \mathbf{y}-term and a number.	Example: Other examples: $\begin{aligned} & x=y \\ & y=4 \\ & x=-2 \\ & y=2 x-7 \\ & y+x=10 \\ & 2 y-4 x=12 \end{aligned}$
3. Quadratic Graph	A 'U-shaped' curve called a parabola. The equation is of the form $y=\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$, where a, b and c are numbers, $\boldsymbol{a} \neq \mathbf{0}$. If $\boldsymbol{a}<\mathbf{0}$, the parabola is upside down.	
4. Cubic Graph	The equation is of the form $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{3}+\boldsymbol{k}$, where \boldsymbol{k} is an number. If $\boldsymbol{a}>\mathbf{0}$, the curve is increasing. If $\boldsymbol{a}<\mathbf{0}$, the curve is decreasing.	
5. Reciprocal Graph	The equation is of the form $\boldsymbol{y}=\frac{A}{x}$, where \boldsymbol{A} is a number and $\boldsymbol{x} \neq \mathbf{0}$. The graph has asymptotes on the \mathbf{x}-axis and \mathbf{y}-axis.	
6. Asymptote	A straight line that a graph approaches but never touches.	

Topic/Skill	Definition/Tips	Example
1. Algebraic Fraction	A fraction whose numerator and denominator are algebraic expressions.	$\frac{6 x}{3 x-1}$
2. Adding/ Subtracting Algebraic Fractions	For $\frac{a}{b} \pm \frac{c}{d}$, the common denominator is bd $\frac{a}{b} \pm \frac{c}{d}=\frac{a d}{b d} \pm \frac{b c}{b d}=\frac{a d \pm b c}{b d}$	$\begin{aligned} & \frac{1}{x}+\frac{x}{2 y} \\ = & \frac{1(2 y)}{2 x y}+\frac{x(x)}{2 x y} \\ = & \frac{2 y+x^{2}}{2 x y} \end{aligned}$
3. Multiplying Algebraic Fractions	Multiply the numerators together and the denominators together. $\frac{a}{b} \times \frac{c}{d}=\frac{a c}{b d}$	$\begin{aligned} & \frac{x}{3} \times \frac{x+2}{x-2} \\ = & \frac{x(x+2)}{3(x-2)} \\ = & \frac{x^{2}+2 x}{3 x-6} \end{aligned}$
4. Dividing Algebraic Fractions	Multiply the first fraction by the reciprocal of the second fraction. $\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \times \frac{d}{c}=\frac{a d}{b c}$	$\begin{aligned} & \frac{x}{3} \div \frac{2 x}{7} \\ = & \frac{x}{3} \times \frac{7}{2 x} \\ = & \frac{7 x}{6 x}=\frac{7}{6} \end{aligned}$
5. Simplifying Algebraic Fractions	Factorise the numerator and denominator and cancel common factors.	$\frac{x^{2}+x-6}{2 x-4}=\frac{(x+3)(x-2)}{2(x-2)}=\frac{x+3}{2}$

Topic/Skill	Definition/Tips	Example
1. Expression	A mathematical statement written using symbols, numbers or letters,	$3 \mathrm{x}+2$ or $5 \mathrm{y}^{2}$
2. Equation	A statement showing that two expressions are equal	$2 \mathrm{y}-17=15$
3. Identity	An equation that is true for all values of the variables An identity uses the symbol: \equiv	$2 x \equiv x+x$
4. Formula	Shows the relationship between two or more variables	Area of a rectangle $=$ length x width or A $=\mathrm{LxW}$
5. Coefficient	A number used to multiply a variable. It is the number that comes before/in front of a letter.	$6 z$ 6 is the coefficient z is the variable
6. Odds and Evens	An even number is a multiple of 2 An odd number is an integer which is not a multiple of 2 .	If n is an integer (whole number): An even number can be represented by $\mathbf{2 n}$ or $\mathbf{2 m}$ etc. An odd number can be represented by $\mathbf{2 n - 1}$ or $\mathbf{2 n + 1}$ or $\mathbf{2 m + 1}$ etc.
7. Consecutive Integers	Whole numbers that follow each other in order.	If n is an integer: $\mathbf{n}, \mathbf{n + 1}, \mathbf{n + 2}$ etc. are consecutive integers.
8. Square Terms	A term that is produced by multiply another term by itself.	If n is an integer: n^{2}, m^{2} etc. are square integers
9. Sum	The sum of two or more numbers is the value you get when you add them together.	The sum of 4 and 6 is 10
10. Product	The product of two or more numbers is the value you get when you multiply them together.	The product of 4 and 6 is 24
11. Multiple	To show that an expression is a multiple of a number, you need to show that you can factor out the number.	$4 n^{2}+8 n-12$ is a multiple of 4 because it can be written as: $4\left(n^{2}+2 n-3\right)$

