Topic/Skill	Definition/Tips	Example
1. Probability	The likelihood/chance of something happening. Is expressed as a number between 0 (impossible) and 1 (certain). Can be expressed as a fraction, decimal, percentage or in words (likely, unlikely, even chance etc.)	
2. Probability Notation	$\mathbf{P}(\mathbf{A})$ refers to the probability that event \mathbf{A} will occur.	P (Red Queen) refers to the probability of picking a Red Queen from a pack of cards.
3. Theoretical Probability	$\frac{\text { Number of Favourable Outcomes }}{\text { Total Number of Possible Outcomes }}$	Probability of rolling a 4 on a fair 6sided die $=\frac{1}{6}$.
4. Relative Frequency	$\frac{\text { Number of Successful Trials }}{\text { Total Number of Trials }}$	A coin is flipped 50 times and lands on Tails 29 times. The relative frequency of getting Tails $=\frac{29}{50}$.
5. Expected Outcomes	To find the number of expected outcomes, multiply the probability by the number of trials.	The probability that a football team wins is 0.2 How many games would you expect them to win out of 40 ? $0.2 \times 40=8 \text { games }$
6. Exhaustive	Outcomes are exhaustive if they cover the entire range of possible outcomes. The probabilities of an exhaustive set of outcomes adds up to 1 .	When rolling a six-sided die, the outcomes $1,2,3,4,5$ and 6 are exhaustive, because they cover all the possible outcomes.
7. Mutually Exclusive	Events are mutually exclusive if they cannot happen at the same time. The probabilities of an exhaustive set of mutually exclusive events adds up to 1 .	Examples of mutually exclusive events: - Turning left and right - Heads and Tails on a coin Examples of non mutually exclusive events: - King and Hearts from a deck of cards, because you can pick the King of Hearts
8. Frequency Tree	A diagram showing how information is categorised into various categories. The numbers at the ends of branches tells us how often something happened (frequency).	

Topic/Skill	Definition/Tips	Example
1. Types of Data	Qualitative Data - non-numerical data Quantitative Data - numerical data Continuous Data - data that can take any numerical value within a given range. Discrete Data - data that can take only specific values within a given range.	Qualitative Data - eye colour, gender etc. Continuous Data - weight, voltage etc. Discrete Data - number of children, shoe size etc.
2. Grouped Data	Data that has been bundled in to categories. Seen in grouped frequency tables, histograms, cumulative frequency etc.	Foot length, $l,(\mathrm{~cm}) ~\left(\begin{array}{c}\text { Number of children } \\ \hline 10 \leqslant l<12\end{array}\right.$
3. Primary /Secondary Data	Primary Data - collected yourself for a specific purpose. Secondary Data - collected by someone else for another purpose.	Primary Data - data collected by a student for their own research project. Secondary Data - Census data used to analyse link between education and earnings.
4. Mean	Add up the values and divide by how many values there are.	The mean of $3,4,7,6,0,4,6$ is $\frac{3+4+7+6+0+4+6}{7}=5$
5. Mean from a Table	1. Find the midpoints (if necessary) 2. Multiply Frequency by values or midpoints 3. Add up these values 4. Divide this total by the Total Frequency If grouped data is used, the answer will be an estimate.	Height in cm Frequency Midpoint $\mathrm{F} \times \mathrm{M}$ $0<h \leq 10$ 8 $8 \times 5=40$ $10<h \leq 30$ 10 20 $10 \times 20=200$ $30\langle\langle 40$ 6 35 $6 \times 35=200$ Total 24 Ienore! $\mathbf{4 5 0}$ Estimated Mean height: $450 \div 24=$ $18.75 \mathrm{~cm}$
6. Median Value	The middle value. Put the data in order and find the middle one. If there are two middle values, find the number half way between them by adding them together and dividing by 2.	Find the median of: $4,5,2,3,6,7,6$ Ordered: 2, 3, 4, 5, 6, 6, 7 Median $=5$
7. Median from a Table	Use the formula $\frac{(n+1)}{2}$ to find the position of the median. n is the total frequency.	If the total frequency is 15 , the median will be the $\left(\frac{15+1}{2}\right)=8$ th position
8. Mode /Modal Value	Most frequent/common. Can have more than one mode (called bimodal or multi-modal) or no mode (if all values appear once)	Find the mode: 4, 5, 2, 3, 6, 4, 7, 8, 4 $\text { Mode }=4$
9. Range	Highest value subtract the Smallest value	Find the range: $3,31,26,102,37,97$. $\text { Range }=102-3=99$

	Range is a 'measure of spread'. The smaller the range the more consistent the data.	A value that 'lies outside' most of the other values in a set of data. An outlier is much smaller or much larger than the other values in a set of data.
10. Outlier		

Topic: Representing Data

5. Pictogram	Uses pictures or symbols to show the value of the data. A pictogram must have a key.	```Black P Red \(\boldsymbol{B}_{\text {日 }}\) Green \(\boldsymbol{5}\) F=4 cars```
6. Line Graph	A graph that uses points connected by straight lines to show how data changes in values. This can be used for time series data, which is a series of data points spaced over uniform time intervals in time order.	
7. Two Way Tables	A table that organises data around two categories. Fill out the information step by step using the information given. Make sure all the totals add up for all columns and rows.	
8. Box Plots	The minimum, lower quartile, median, upper quartile and maximum are shown on a box plot. A box plot can be drawn independently or from a cumulative frequency diagram.	Students sit a maths test. The highest score is 19 , the lowest score is 8 , the median is 14 , the lower quartile is 10 and the upper quartile is 17 . Draw a box plot to represent this information.
9. Comparing Box Plots	Write two sentences. 1. Compare the averages using the medians for two sets of data. 2. Compare the spread of the data using the range or IQR for two sets of data. The smaller the range/IQR, the more consistent the data. You must compare box plots in the context of the problem.	'On average, students in class A were more successful on the test than class B because their median score was higher.' 'Students in class B were more consistent than class A in their test scores as their IQR was smaller.'

Topic/Skill	Definition/Tips	Example
1. Combination	A collection of things, where the order does not matter.	How many combinations of two ingredients can you make with apple, banana and cherry?

6. Venn Diagram Notation	\in means 'element of a set' (a value in the set) \{ \} means the collection of values in the set. ξ means the 'universal set' (all the values to consider in the question) A' means 'not in set A^{\prime} ' (called complement) A \cup B means 'A or B or both' (called Union) $A \cap B$ means ' A and B (called Intersection)	Set A is the even numbers less than 10 . $\mathrm{A}=\{2,4,6,8\}$ Set B is the prime numbers less than 10 . $\mathrm{B}=\{2,3,5,7\}$ $\begin{aligned} & A \cup B=\{2,3,4,5,6,7,8\} \\ & A \cap B=\{2\} \end{aligned}$
7. AND rule for Probability	When two events, A and B , are independent: $P(A \text { and } B)=P(A) \times P(B)$	What is the probability of rolling a 4 and flipping a Tails? $\begin{gathered} P(4 \text { and Tails })=P(4) \times P(\text { Tails }) \\ =\frac{1}{6} \times \frac{1}{2}=\frac{1}{12} \end{gathered}$
8. OR rule for Probability	When two events, A and B, are mutually exclusive: $P(A \text { or } B)=P(A)+P(B)$	What is the probability of rolling a 2 or rolling a 5? $\begin{gathered} P(2 \text { or } 5)=P(2)+P(5) \\ =\frac{1}{6}+\frac{1}{6}=\frac{2}{6}=\frac{1}{3} \end{gathered}$
9. Conditional Probability	The probability of an event A happening, given that event B has already happened. With conditional probability, check if the numbers on the second branches of a tree diagram changes. For example, if you have 4 red beads in a bag of 9 beads and pick a red bead on the first pick, then there will be 3 red beads left out of 8 beads on the second pick.	

Topic: Histograms and Cumulative Frequency

5. Quartiles from Cumulative Frequency Diagram	Lower Quartile (Q1): 25\% of the data is less than the lower quartile. Median (Q2): $\mathbf{5 0 \%}$ of the data is less than the median. Upper Quartile (Q3): 75\% of the data is less than the upper quartile. Interquartile Range (IQR): represents the middle 50% of the data.	$I Q R=37-18=19$
6. Hypothesis	A statement that might be true, which can be tested.	Hypothesis: 'Large dogs are better at catching tennis balls than small dogs'. We can test this hypothesis by having hundreds of different sized dogs try to catch tennis balls.

