Topic: Basic Probability

Definition/Tips	Example
happening.	Impossible Unlikely Even Chance Likely Certain
Is expressed as a number between ()	
(impossible) and 1 (certain).	
Can be expressed as a fraction, decimal,	1-in-6 Chance 4-in-5 Chance
percentage or in words (likely, unlikely,	
even chance etc.)	
P (A) refers to the probability that event A	P(Red Queen) refers to the probability
will occur.	of picking a Red Queen from a pack of cards.
Number of Favourable Outcomes	Probability of rolling a 4 on a fair 6-
Total Number of Possible Outcomes	sided die $=\frac{1}{6}$.
Number of Successful Trials	A coin is flipped 50 times and lands on
Total Number of Trials	Tails 29 times.
	The relative frequency of getting Tails
	$=\frac{29}{50}$.
To find the number of expected outcomes,	The probability that a football team
multiply the probability by the number of	wins is 0.2 How many games would
trials.	you expect them to win out of 40?
	$0.2 \times 40 = 8 games$
Outcomes are exhaustive if they cover the	When rolling a six-sided die, the
entire range of possible outcomes.	outcomes 1, 2, 3, 4, 5 and 6 are
	exhaustive, because they cover all the
	possible outcomes.
outcomes adds up to 1.	Examples of mutually evolutive events
	Examples of mutually exclusive events:
cannot nappen at the same time.	- Turning left and right
The probabilities of an exhaustive set of	- Heads and Tails on a coin
mutually exclusive events adds up to 1.	
	Examples of non mutually exclusive
	events:
	- King and Hearts from a deck of cards,
	because you can pick the King of
	Hearts
• •	Wears glasses
categorised into various categories.	18 Does not
The numbers at the ends of branches tells	Bols Does not wear glasses
	\mathbf{i}
	Siris Wears glasses
· • • • /	
	Does not wear glasses
	Is expressed as a number between 0 (impossible) and 1 (certain). Can be expressed as a fraction, decimal, percentage or in words (likely, unlikely, even chance etc.) P(A) refers to the probability that event A will occur. Number of Favourable Outcomes Total Number of Possible Outcomes <u>Number of Successful Trials</u> <u>Number of Successful Trials</u> Total Number of Trials Total Number of trials Total Number of expected outcomes, multiply the probability by the number of trials. Outcomes are exhaustive if they cover the entire range of possible outcomes. The probabilities of an exhaustive set of outcomes adds up to 1. Events are mutually exclusive if they cannot happen at the same time. The probabilities of an exhaustive set of

	The lines connected the numbers are called									
	branches.									_
9. Sample	The set of all possible outcomes of an		+	1	2	3	4	5	6	
Space	experiment.		1	2	3	4	5	6	7	
			2	3	4	5	6	7	8	
			3	4	5	6	7	8	9	
			4	5	6	7	8	9	10	
			5	6	7	8	9	10	11	
			6	7	8	9	10	11	12	
10. Sample	A sample is a small selection of items from	A samp	ole c	coul	d be	e se	lect	ing	10 s	students
	a population.	from a	yea	r gr	oup	ats	scho	ool.		
	A sample is biased if individuals or groups									
	from the population are not represented in									
	the sample.									
11. Sample	The larger a sample size, the closer those	A samp	ole s	size	of	100	giv	es a	mo	re
Size	probabilities will be to the true probability.	reliable	e res	ult	thar	n a s	sam	ple	size	of 10.

Topic: Summarising Data

Topic/Skill	Definition/Tips	Example
1. Types of Data	Qualitative Data – non-numerical data Quantitative Data – numerical data	Qualitative Data – eye colour, gender etc.
	Continuous Data – data that can take any numerical value within a given range.	Continuous Data – weight, voltage etc.
	Discrete Data – data that can take only specific values within a given range.	Discrete Data – number of children, shoe size etc.
2. Grouped	Data that has been bundled in to	Foot length, <i>l</i> , (cm) Number of children
Data	categories.	$10 \leqslant l < 12 \qquad \qquad 5$
	Seen in grouped frequency tables,	12 ≤ <i>l</i> < 17 53
	histograms, cumulative frequency etc.	
3. Primary	Primary Data – collected yourself for a	Primary Data – data collected by a
/Secondary	specific purpose.	student for their own research project.
Data	sheeme herbesse	succession and a succession projection
	Secondary Data – collected by someone	Secondary Data – Census data used to
	else for another purpose.	analyse link between education and
		earnings.
4. Mean	Add up the values and divide by how many	The mean of 3, 4, 7, 6, 0, 4, 6 is
	values there are.	$\frac{3+4+7+6+0+4+6}{2} = 5$
5 Maan frame a	1 Find the midneinte (if necessary)	7
5. Mean from a Table	1. Find the midpoints (if necessary)	Height in cmFrequencyMidpoint $F \times M$ $0 < h \le 10$ 85 $8 \times 5 = 40$
Table	2. Multiply Frequency by values or midpoints	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	3. Add up these values	Total 24 Ignore! 450
	4. Divide this total by the Total Frequency	Estimated Mean
		height: $450 \div 24 =$
	If grouped data is used, the answer will be	18.75cm
	an estimate .	
6. Median Value	The middle value.	Find the median of: 4, 5, 2, 3, 6, 7, 6
	Put the data in order and find the middle one.	Ordered: 2, 3, 4, 5, 6, 6, 7
	If there are two middle values , find the	Median = 5
	number half way between them by adding	
	them together and dividing by 2.	
7. Median	Use the formula $\frac{(n+1)}{2}$ to find the position of	If the total frequency is 15, the median
from a Table	the median. 2 to the position of 2	will be the $\left(\frac{15+1}{2}\right) = 8th$ position
	<i>n</i> is the total frequency.	
8. Mode /Modal Value	Most frequent/common.	Find the mode: 4, 5, 2, 3, 6, 4, 7, 8, 4
	Can have more than one mode (called bi-	Mode = 4
	modal or multi-modal) or no mode (if all	
	values appear once)	
0 Damaa	Highest value subtract the Smallest value	Find the range: 3, 31, 26, 102, 37, 97.
9. Range	ingress value substract the Shanest value	

	Range is a 'measure of spread'. The smaller	
	the range the more <u>consistent</u> the data.	
10. Outlier	A value that ' lies outside ' most of the other values in a set of data. An outlier is much smaller or much larger than the other values in a set of data.	12 10 8 6 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0
		0 20 40 60 80 100
11. Lower	Divides the bottom half of the data into	Find the lower quartile of: 2, <u>3</u> , 4, 5, 6,
Quartile	two halves.	6, 7
	$LQ = Q_1 = \frac{(n+1)}{4} th$ value	$Q_1 = \frac{(7+1)}{4} = 2nd$ value $\rightarrow 3$
12. Lower	Divides the top half of the data into two	Find the upper quartile of: 2, 3, 4, 5, 6,
Quartile	halves.	<u>6</u> , 7
	$UQ = Q_3 = \frac{3(n+1)}{4} th \text{ value}$	$Q_3 = \frac{3(7+1)}{4} = 6th \text{ value } \rightarrow 6$
13.	The difference between the upper quartile	Find the IQR of: 2, 3, 4, 5, 6, 6, 7
Interquartile	and lower quartile.	
Range	_	$IQR = Q_3 - Q_1 = 6 - 3 = 3$
	$IQR = Q_3 - Q_1$	
	The smaller the interquartile range , the more consistent the data.	

Topic: Representing Data

Topic/Skill	Definition/Tips	Example		
1. Frequency	A record of how often each value in a set	Number of marks	Tally marks	Frequency
Table	of data occurs .	1	JHT	7
		2	1111	5
		3	JHH I	6
		4	JHH	5
		5		3
		Total	111	26
2. Bar Chart	Represents data as vertical blocks.			
2. Dur Churt	x - axis shows the type of data y - axis shows the frequency for each type of data Each bar should be the same width There should be gaps between each bar Remember to label each axis.	14 12 10 8 6 4 4 2 0 0	1 2 3 Imber of pets o	4 wwned
3. Types of	Compound/Composite Bar Charts show		Iron	
Bar Chart	data stacked on top of each other.	Weight (gm) 40 20 0 4	Carbon Aluminum	c t
	Comparative/Dual Bar Charts show data side by side.	50 40 30 20 10 Jan Feb	ainfáll Mar Apr May Month Bar Chart	Key: London Bristol
4. Pie Chart	Used for showing how data breaks down			
	into its constituent parts.		luash	
	When drawing a pie chart, divide 360° by the total frequency . This will tell you how many degrees to use for the frequency of each category.	Tennis 40 6i Hockey	144°	
	Remember to label the category that each sector in the pie chart represents.	If there are 40 pe each person will of the pie chart.	-	•

	1	<u> </u>
5. Pictogram	Uses pictures or symbols to show the	Black 🚔 🚔 🖣
	value of the data.	Red 🚍 🚍 🚍
	A nistogram must have a key	Green 🗲 📻 = 4 cars
	A pictogram must have a key .	
6 Line Creat	A graph that uses noints compared by	Others 🖨 🛱 🛱 🛱
6. Line Graph	A graph that uses points connected by straight lines to show how data changes in	14
	values.	
	values.	8
	This can be used for time series data ,	6
	which is a series of data points spaced over	
	uniform time intervals in time order .	
		1 2 3 4 5 6 7 8 9
7. Two Way	A table that organises data around two	Question: Complete the 2 way table below. Left Handed Right Handed Total
Tables	categories.	Boys 10 58 Girls
		Total 84 100 Answer: Step 1, fill out the easy parts (the totals)
	Fill out the information step by step using	Left Handed Right Handed Total
	the information given.	Boys 10 48 58 Girls 42 42 42
	Make sure all the totals add up for all	Total 16 84 100 Answer: Step 2, fill out the remaining parts
	columns and rows.	Left Handed Right Handed Total Boys 10 48 58
		Girls 6 36 42 Total 16 84 100
8. Box Plots	The minimum, lower quartile, median,	Students sit a maths test. The highest
	upper quartile and maximum are shown on	score is 19, the lowest score is 8, the
	a box plot.	median is 14, the lower quartile is 10
		and the upper quartile is 17. Draw a
	A box plot can be drawn independently or	box plot to represent this information.
	from a cumulative frequency diagram.	
9. Comparing	Write two sentences.	'On average, students in class A were
Box Plots	1. Compare the averages using the	more successful on the test than class B
DOATIOUS	medians for two sets of data.	because their median score was higher.'
	2. Compare the spread of the data using the	sector mas manor.
	range or IQR for two sets of data.	'Students in class B were more
		consistent than class A in their test
	The <u>smaller</u> the range/IQR, the <u>more</u>	scores as their IQR was smaller.'
	consistent the data.	
	Vou must some ber ulate in the sector	
	You must compare box plots in the context	
	of the problem.	

Topic: Systematic Listing

Topic/Skill	Definition/Tips	Example
1. Combination	A collection of things, where the order does not matter .	How many combinations of two ingredients can you make with apple, banana and cherry? Apple, Banana Apple, Cherry Banana, Cherry 3 combinations
2. Permutation	A collection of things, where the order does matter .	You want to visit the homes of three friends, Alex (A), Betty (B) and Chandra (C) but haven't decided the order. What choices do you have? ABC ACB BAC BCA CAB CBA
3. Permutations with	When something has n different types, there are n choices each time.	How many permutations are there for a three-number combination lock?
Repetition	Choosing <i>r</i> of something that has <i>n</i> different types, the permutations are: $n \times n \times(r \text{ times}) = \mathbf{n}^r$	10 numbers to choose from $\{1, 2,, 10\}$ and we choose 3 of them \rightarrow $10 \times 10 \times 10 = 10^3 = 1000$ permutations.
4. Permutations without	We have to reduce the number of available choices each time .	How many ways can you order 4 numbered balls?
Repetition	One you have chosen something, you cannot choose it again.	$4 \times 3 \times 2 \times 1 = 24$
5. Factorial	The factorial symbol '!' means to multiply a series of descending integers to 1. Note: 0! = 1	$4! = 4 \times 3 \times 2 \times 1 = 24$
6. Product Rule for Counting	If there are <i>x</i> ways of doing something and <i>y</i> ways of doing something else, then there are <i>xy</i> ways of performing both.	To choose one of $\{A, B, C\}$ and one of $\{X, Y\}$ means to choose one of $\{AX, AY, BX, BY, CX, CY\}$ The rule says that there are $3 \times 2 = 6$ choices.

Topic: Probability (Trees and Venns)

Topic/Skill	Definition/Tips	Example
1. Tree	Tree diagrams show all the possible	Bag A Bag B
Diagrams	outcomes of an event and calculate their	1 .
Diagrams	probabilities.	3 red
	probabilities.	$\frac{1}{2}$ and
	All branches must add up to 1 when	5 2 black
	All branches must add up to 1 when	3 1
	adding downwards.	$\frac{1}{2}$
	This is because the probability of	4 start 3 red
	something not happening is 1 minus the	4 black
	probability that it does happen.	= black
		3
	Multiply going across a tree diagram.	
	Add going down a tree diagram.	
2. Independent	The outcome of a previous event does not	An example of independent events
Events	influence/affect the outcome of a second	could be <u>replacing</u> a counter in a bag
	event.	after picking it.
3. Dependent	The outcome of a previous event does	An example of dependent events could
Events	influence/affect the outcome of a second	be not replacing a counter in a bag after
	event.	picking it.
		'Without replacement'
4. Probability	P (A) refers to the probability that event A	P(Red Queen) refers to the probability
Notation	will occur.	of picking a Red Queen from a pack of
		cards.
	P(A') refers to the probability that event	P(Blue') refers to the probability that
	A will <u>not</u> occur.	you do not pick Blue.
	$P(A \cup B)$ refers to the probability that	P(Blonde \cup Right Handed) refers to the
	event A or B or both will occur.	probability that you pick someone who
		is Blonde or Right Handed or both.
		6
	$P(A \cap B)$ refers to the probability that	P(Blonde \cap Right Handed) refers to the
	both events A and B will occur.	probability that you pick someone who
		is both Blonde and Right Handed.
5. Venn	A Venn Diagram shows the relationship	
Diagrams	between a group of different things and	A B A B
	how they overlap.	
	You may be asked to shade Venn Diagrams	
	as shown below and to the right.	$(A \cap B)' \qquad (A \cup B)'$
	as shown below and to the right.	
	$A \cup B$ $A \cap B$	
	$A = B \leq A = B \leq S$	
	The Union The Intersection	
	'A or B or Both' 'A and B'	

		$A' \cap B$ $A \longrightarrow B'$ $A \cup B'$			
6. Venn Diagram Notation	E means 'element of a set' (a value in the set) $\{\ \}$ means the collection of values in the set. ξ means the 'universal set' (all the values to consider in the question)	Set A is the even numbers less than 10. $A = \{2, 4, 6, 8\}$ Set B is the prime numbers less than 10. $B = \{2, 3, 5, 7\}$			
	 A' means 'not in set A' (called complement) A ∪ B means 'A or B or both' (called Union) A ∩ B means 'A and B (called Intersection) 	A \cup B = {2, 3, 4, 5, 6, 7, 8} A \cap B = {2}			
7. AND rule for Probability	When two events, A and B, are independent :	What is the probability of rolling a 4 and flipping a Tails?			
	$P(A \text{ and } B) = P(A) \times P(B)$	$P(4 and Tails) = P(4) \times P(Tails)$ $= \frac{1}{6} \times \frac{1}{2} = \frac{1}{12}$			
8. OR rule for Probability	When two events, A and B, are mutually exclusive:	What is the probability of rolling a 2 or rolling a 5?			
	P(A or B) = P(A) + P(B)	$P(2 \text{ or } 5) = P(2) + P(5)$ $= \frac{1}{6} + \frac{1}{6} = \frac{2}{6} = \frac{1}{3}$			
9. Conditional Probability	The probability of an event A happening, given that event B has already happened.	1st Bead 2nd Bead 38 Red			
	With conditional probability, check if the numbers on the second branches of a tree diagram changes. For example, if you have 4 red beads in a bag of 9 beads and pick a red bead on the first pick, then there will be 3 red beads left out of 8 beads on the	$\begin{array}{c c} \frac{4}{9} & \text{Red} & \frac{5}{8} & \text{Green} \\ \hline \frac{5}{9} & \text{Green} & \frac{4}{8} & \text{Red} \end{array}$			
	second pick.	4/8 Green			

Topic: Histograms and Cumulative Frequency Topic/Skill Example **Definition/Tips** A visual way to display frequency data 1. Histograms Frequency using bars. Density (FD)Bars can be **unequal in width**. $8 \div 5 = 1.6$ Histograms show frequency density on the $6 \div 20 = 0.3$ y-axis, not frequency. $15 \div 15 = 1$ $5 \div 25 = 0.2$ $Frequency \ Density = \frac{Frequency}{Class \ Width}$ Frequency Height(cm) $0 < h \le 10$ 8 $10 < h \le 30$ 6 15 $30 < h \le 45$ 5 $45 < h \le 70$ 2. Interpreting The **area** of the bar is proportional to the A histogram shows information about Histograms frequency of that class interval. the heights of a number of plants. 4 plants were less than 5cm tall. Find the number of plants more than 5cm tall. Frequency = Freq Density × Class Width Height (cm) Above 5cm: $1.2 \ge 10 + 2.4 \ge 15 = 12 + 36 = 48$ Cumulative Frequency is a **running total**. 3. Cumulative Cumulative Frequency Frequency 15 Frequency Age 15 + 35 = 5015 $0 < a \le 10$ 50 + 10 = 6035 $10 < a \le 40$ $40 < a \le 50$ 10 4. Cumulative A cumulative frequency diagram is a **curve** 40that goes up. It looks a little like a Frequency 30 Diagram stretched-out S shape. CF 20. Plot the cumulative frequencies at the end-10 **point** of each interval. 0 30 10 20 40 50 Height

5. Quartiles from Cumulative Frequency Diagram	 Lower Quartile (Q1): 25% of the data is less than the lower quartile. Median (Q2): 50% of the data is less than the median. Upper Quartile (Q3): 75% of the data is less than the upper quartile. Interquartile Range (IQR): represents the middle 50% of the data. 	40- Value of UQ taken from 33rd = 37 Value of Medidan taken from 22nd = 30 Value of LQ taken from 11th = 18 0 Value of LQ taken from 11th = 18 0 Height
6. Hypothesis	A statement that might be true, which can be tested.	IQR = 37 - 18 = 19 Hypothesis: 'Large dogs are better at catching tennis balls than small dogs'. We can test this hypothesis by having hundreds of different sized dogs try to catch tennis balls.