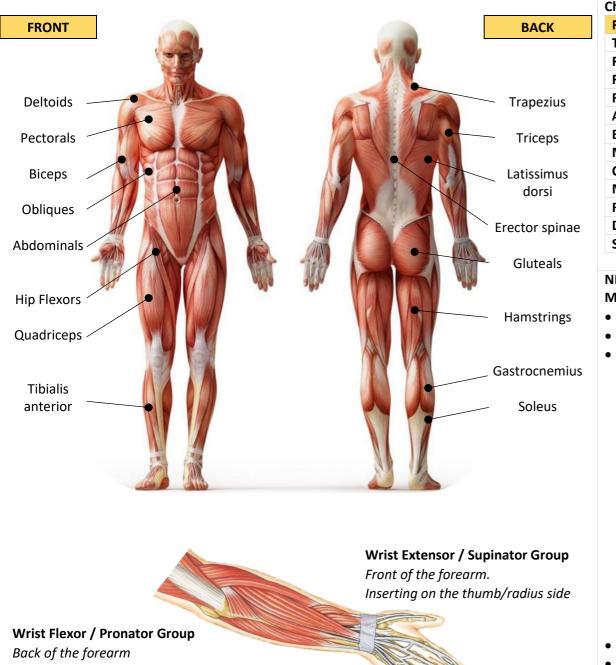


1. Stimulated increase of mineral uptake in bones due to weight bearing exercise

- 1. Increased bone strength
- 2. Increased ligament strength

- 1. Skeletal disease: exercise offsets the risks of arthritis, osteoporosis 2. Age: Young children at risk of greenstick fracture, resistance training may stunt growth (though disputed)

Made by Mike Tyler @MikeTylerSport


Flexion	Horizontal Flexion	Horizontal Extension
	130°	455
duction	Horizontal Abduction	Horizontal Adduction

KNOWLEDGE ORGANISER

CHARACTERISTICS & FUNCTIONS OF THREE TYPES OF MUSCLE

Muscle	Characteristics	Example				
Cardiac	Non-fatiguing, involuntary	Heart (only)				
Skeletal	Fatiguing, voluntary	Biceps, Triceps, Soleus, etc.				
Smooth	Involuntary, slow contraction	Internal organs, blood vessels				

MAJOR SKELETAL MUSCLES

Contraction As muscle contracts... Used for... Isometric ... no change in muscle len

THREE TYPES OF SKELETAL MUSCLE CONTRACTION

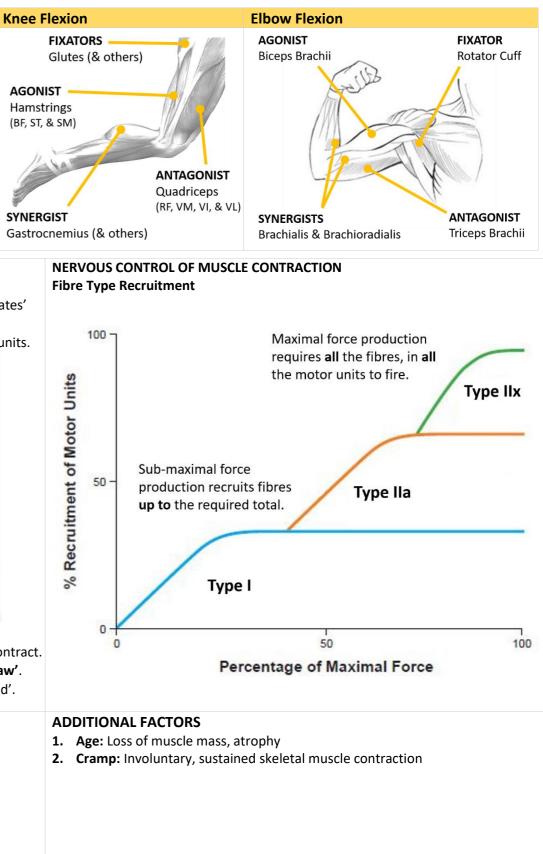
...muscle shortens

...muscle lengthens

Concentric

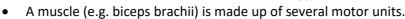
Eccentric

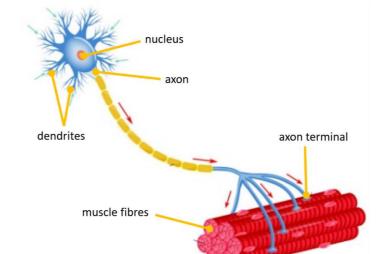
ngth	Static holds (e.g. iron cross)
	Movement
	Slowing and braking movements


MUSCLE FIBRE TYPES

Fibre Type	Type I	Type IIa	Type IIx	
Twitch Speed	Slow	Fast	Fast	
Force	Low	High	Very High	
Fatigue	Slow	Medium	Fast	
Recovery	Slow	Medium	Fast Glycolytic Low	
ATP Source	Oxidative	Ox. & Gly.		
Blood Supply	High	High		
Myoglobin	High	High	Low White Low Third	
Colour	Red	Red		
Mitochondria	High	High		
Recruitment	First	Second		
Diameter	Small	Medium	Large Speed	
Suitable for	Endurance	Games		

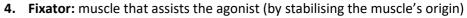
Unit 1 Anatomy & Physiology: The Muscular System

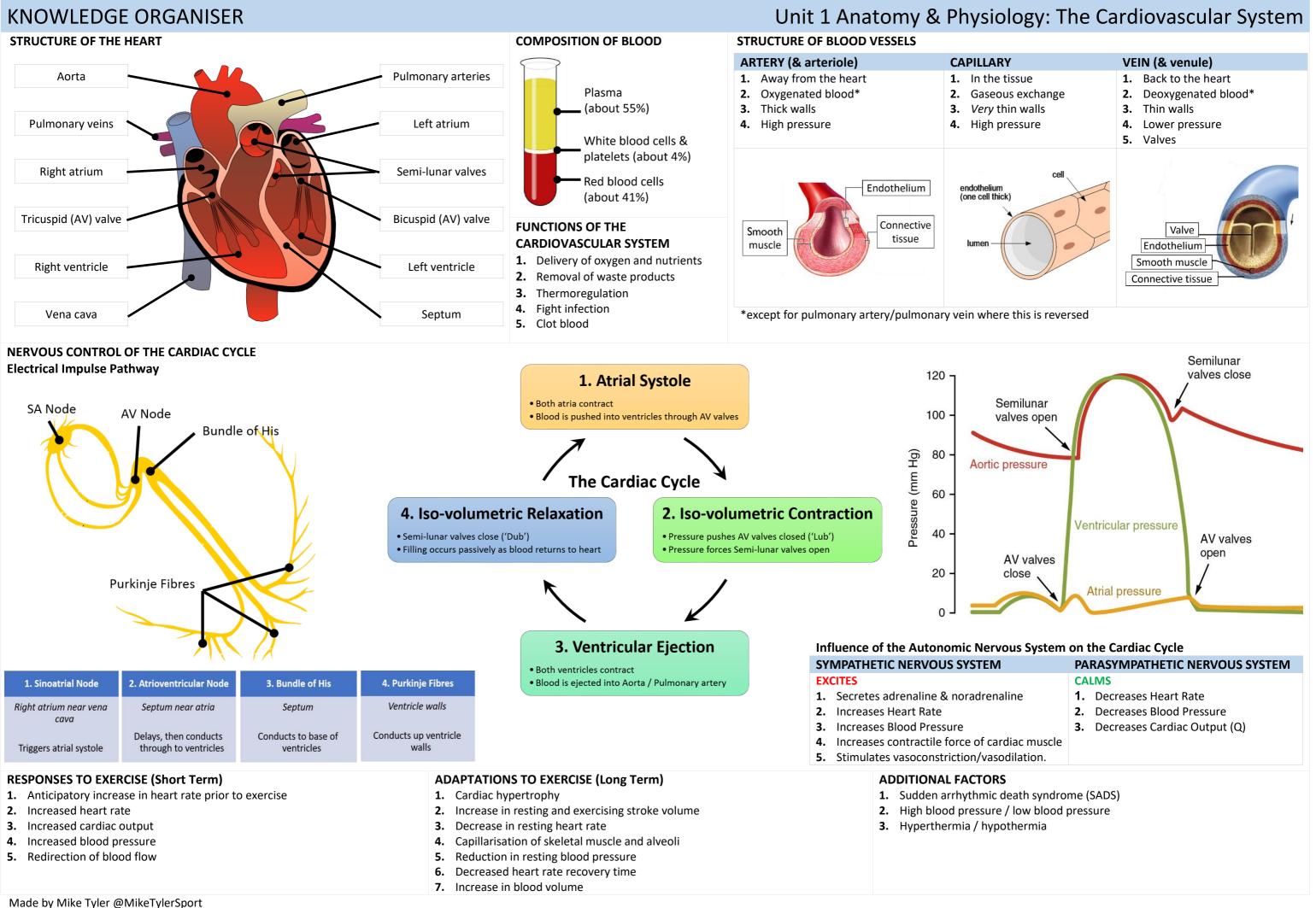

ANTAGONISTIC PAIRS


Muscles cannot push so are 'paired' with others that pull in the opposite direction.

NERVOUS CONTROL OF MUSCLE CONTRACTION **Motor Units** A motor unit is a **motor neuron** and all the fibres it 'innervates'

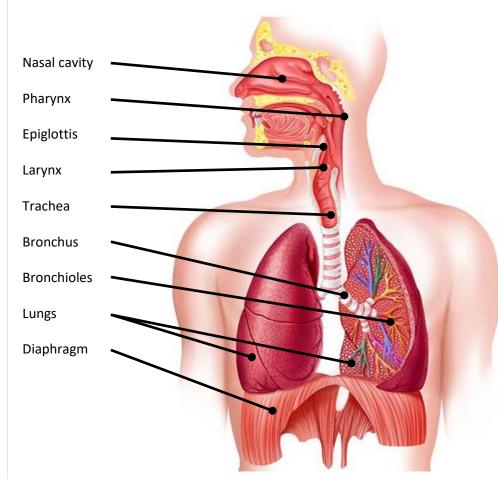
All the fibres in a motor unit are of the same type.

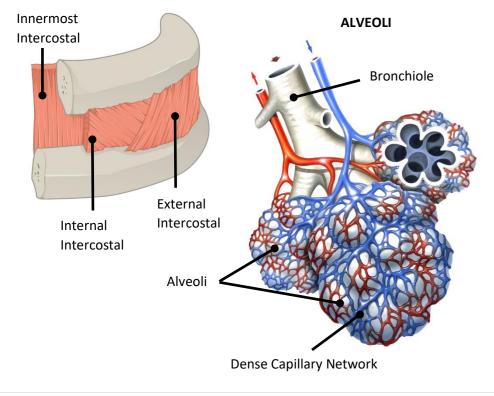

An electrical impulse is sent along the neuron. •


- If the impulse if sufficient **all** the fibres in the motor unit contract.
- Otherwise none of them contract. This is the 'all or none law'.
- To create more force more motor units must be 'innervated'. •

RESPONSES TO EXERCISE (Short Term)	ADAPTATIONS TO EXERCISE (Long Term)	ADDITIONAL FACTORS
1. Increased blood supply	1. Hypertrophy	1. Age: Loss of muscle r
2. Increased muscle temperature	2. Increased tendon strength	2. Cramp: Involuntary,
3. Increased muscle pliability	3. Increase in myoglobin stores	
4. Lactate (high intensity exercise)	4. Increase in number and size of mitochondria	
5. Micro-tears (resistance exercise)	5. Increased storage of glycogen	
	6. Increased storage of fat	
	7. Increase tolerance to lactate	

Inserting on the little finger/ulna side

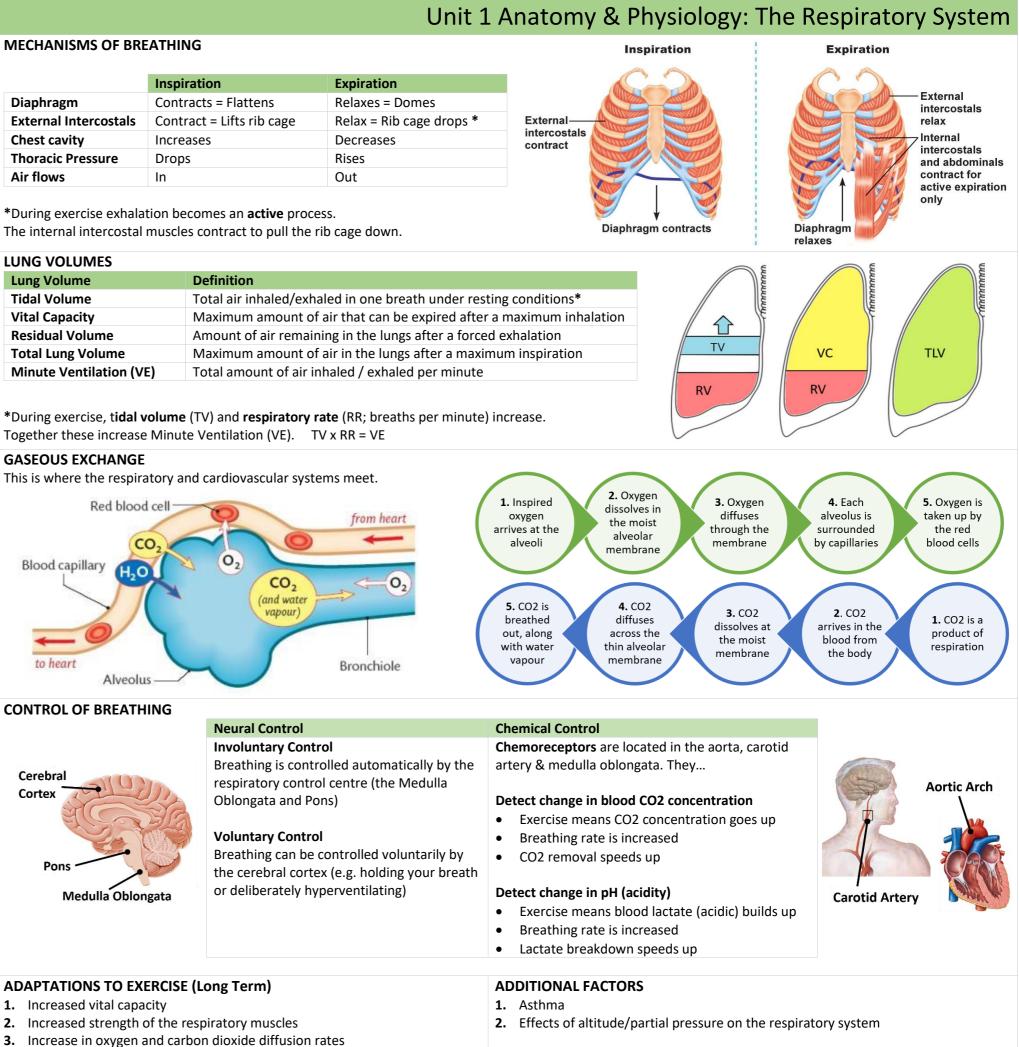

1. Agonist: muscle that contracts to produce movement (also called prime mover) 2. Antagonist: muscle that relaxes (if contracted would make opposite joint movement) **3. Synergist:** muscle that assists the agonist (in force production)

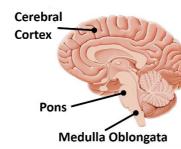


KNOWLEDGE ORGANISER

STRUCTURE

INTERCOSTAL MUSCLES




RESPONSES TO EXERCISE (Short Term)

- **1.** Increase in breathing rate
- 2. Increased tidal volume

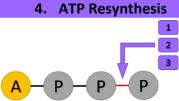
	Inspiration	Expiration			
Diaphragm	Contracts = Flattens	Relaxes = Domes			
External Intercostals	Contract = Lifts rib cage	Relax = Rib cage drops *			
Chest cavity	Increases	Decreases			
Thoracic Pressure	Drops	Rises			
Air flows	In	Out			

UNG VOLUMES	
Lung Volume	Definition
Tidal Volume	Total air inhaled/exhaled in one breath under resting conditions*
Vital Capacity	Maximum amount of air that can be expired after a maximum inhalation
Residual Volume	Amount of air remaining in the lungs after a forced exhalation
Total Lung Volume	Maximum amount of air in the lungs after a maximum inspiration
Minute Ventilation (VE)	Total amount of air inhaled / exhaled per minute

Involuntary Control
Breathing is controlled automatically by the
respiratory control centre (the Medulla
Oblongata and Pons)

Made by Mike Tyler @MikeTylerSport

KNOWLEDGE ORGANISER


Unit 1 Anatomy & Physiology: Energy Systems

THE ROLE OF ATP IN EXERCISE

1. ATP Availability		2. ATP Structure		3. A	3. ATP Breakdown			4. ATP Resynthesis	
				A - P - P P					
ATP is stored in the muscles. It is readily available to be bro No other compound can be us	ken down. grou		of 3 phosphates attached to	an Adenine	The final phosphate is bro Energy is now available for ADP is left.			The pa	thesis of ATP from ADP occurs via 3 pathways. hthway used will be determined by hty/duration, fuel source & availability of oxygen.
1. THE ATP-PC (ALACTIC) ENER	RGY SYSTEM	2.	THE LACTATE ENERGY SYSTE	М		3. 1	THE AEROBIC ENERGY SY	STEM	
Type: Anaerobic Fuel Source: Creatine Phosphat Duration: Approx. 6-10 seconds Recovery Time: About 3 mins Used in: Sports requiring explos	5	Fue Du Rec	 De: Anaerobic Glycolysis De: Source: Glycogen ration: Approx. 10 secs to 2 m covery Time: 1-2 hours ed in: Stop/start games, field a 			Fuel Dura Reco	e: Aerobic Glycolysis (& Li Source: Glycogen and Fa ation: Longer than 2 mins overy Time: 24-48 hours d in: Long distance & end	it S	
1 A - P - P P	ATP requires resynthesizing	1	A - P - P P	ATP requires	resynthesizing	1	A-P-P	P	ATP requires resynthesizing
2 <mark>C</mark> P	Creatine Phosphate is present in the muscle cell	2	G	and in the liv	present in the muscle cell ver. resent in the bloodstream	2	G		Glycogen is present in the muscle cell and in th liver. Glucose is present in the bloodstream
3 C P	Creatine Phosphate is broken down to provide the energy required.	3		provide the	cogen is broken down to energy required. ed up the process.	3			Glucose/Glycogen is broken down to provide the energy required. Enzymes speed up the process.
4 A - P - P - P	1 PC molecule produces 1 new ATP molecule.	4	Pyruvate — Lactate		lso produced. gen is available this is to lactate.	4	Pyruvate Acety CoA		Pyruvate is also produced. Oxygen is available so pyruvate is broken down into Acetyl CoA
		5	A - P - P - P	1 Glycogen I ATP molecu	nolecule produces 3 new es.	5	$\begin{array}{c} \text{Fatty} \\ \text{Acids} \end{array} \longrightarrow \begin{array}{c} \text{Acetyl} \\ \text{CoA} \end{array}$		Or, Acetyl CoA can be created from fats by a process called beta-oxidation
NERGY CONTINUUM t any given time, all the energ roportion is determined by int						6	Acetyl CoA Cycle ETC		Acetyl CoA passes through the Krebs Cycle and the Electron Transport Chain (ETC) By products include CO2, O2 and H2O. More energy is produced here.
CP Anaerobic glycolysis glycolysis glycolysi		ATF 1. Lac 1.	APTATIONS TO EXERCISE (Lor P-PC (alactic) energy system Increased creatine stores. tate energy system Increase tolerance to lactate.	ng Term)		7	A - P - P - I		1 Glycogen molecule produces up to 38 new ATP molecules. (But rarely achieves this yield)
Time 6–10 seconds 30–60 seconds	3–4 hours	1. 2.	obic energy system Increased use of fats as an ener Increased storage of glycogen.			1. [DITIONAL FACTORS Diabetes (hypoglycaemic att Children's lack of a lactate s		

3. Increased numbers of mitochondria.

Made by Mike Tyler @MikeTylerSport

2. Children's lack of a lactate system